Preventing Confidential Data Disclosure in
XML Document Modification

Somchai CHATVICHIENCHAI

XML SLEOE T I BT A EEE BRI EIZOWT

Frewv b T4 FVFv A JVAFxA

Abstract: As XML is rapidly gaining popularity as a mechanism for shaving and deliver-
ing information among businesses, ovganizations, and users on the Internet, the need of pro-
tecting confidential data in XML documents is becoming important. To provide fine-grained
access control to data in XML document, existing XML access control models use path expres-
stons of XPath for locating sensitive nodes in the documents. Hence, access control policy is de-
fined based on the contents and structure of XML documents. However, confidential data dis-
closure may arise by an unsecured-update that modifies contents or structures of the documents
referred by access control policy. In order to solve this problem, we propose an algorithm that
decides whether a given update vequest against an XML document is not unsecured-update re-
quest and is permitted under the requestor’s access control policy.

Key Words: XML documents, Access Control Policy, XPath, Tree Embedding.

1. Introduction

XML [12] is rapidly gaining popularity as a mechanism for sharing and delivering information
among businesses, organizations, and users on the Internet. The need of protecting confidential
data in XML documents is becoming more and more important. A number of XML access control
models are proposed in the literature [1, 3, 5]. XACML [8] is an OASIS standard for access
control of XML documents. To provide fine-grained access control to data in XML document,
these models use path expressions of XPath [13] for locating sensitive nodes in XML documents.
The identification of a sensitive node is no longer restricted to the value of the node itself but de-
pends on the context, the form of the path (from the root node to that node) and the children/
descendants of that node. Hence definition of access control policy is strongly related to the node
values and the structural relationship between nodes of XML documents. In the statistic analysis
approach [7], XPath queries to the XML database can be checked whether having intersection
with access control policies. The result of statistic analysis of a query is either grant, deny, or in-
determinate. In the grant case, the XML database is accessed to answer the query. In the deny
case, query evaluation is terminated without accessing the XML database. In the indeterminate

1

Journal of the Faculty of Global Communication Siebold University of Nagasaki No.6

case, the XML database is accessed to retrieve necessary data to determine accessibility. Updat-
ing XML data is still a research issue [11, 2, 6].In[11], a set of basic update operations for both
ordered and unordered XML data is proposed. The authors describe extensions to the proposed
standard XML query language, XQuery, to incorporate the update operations. In [2], the authors
have proposed an infrastructure for managing secure update operations on XML data. Each sub-
ject in the collaborative group only receives the symmetric key (s) for the portion(s) he/she is en-
abled to see and/or modify. Additionally, attached to the encrypted document, a subject receives
some control information, with the purpose of making him/her able to locally verify the correct-
ness of the updates performed so far on the document, without the need of interacting with the
document server. In [6], the authors define new action types to systematically manage complex
information of access right and to process various update queries in an efficient manner.

As we said before, definition of access control policy is strongly related to content and the struc-
tural relationship between nodes of XML documents. Confidential data disclosure problem may
arise by the update that modifies node values or the structural relationship between nodes
referred by the access control policy.

Motivating Scenarios: We begin by giving an example to describe the motivation of studying
this problem. Consider the sample XML document (company.xml) of Fig.1(a) stored in an XML
server, and the authorization rules RI, R2, R3 and R4 of Fig.1(b) defined by the security
manager. RI states that Jane is allowed to read and write data from the company node of com-
pany.xml. R2 states that Jane is not allowed to read and write salary information of London
branch’s staffs whose rank are “Manager”. R3 states that Jane is not allowed to write staff iden-
tification of all staffs in company.xml. R4 states that Jane is not allowed to read staff information of
Tokyo branch. Based on R1, R2, R3 and R4, the view over company.xml for Jane is shown in Fig.1
(c). Salary data of Sara doesn’t appear in this view. However, Jane can read Sara’s salary by is-
suing to the server the update request that modifies rank value of Sara of company.xml from

“Manager” to “Clerk”, and requesting the server to send her the view over the updated com-
pany.xml. This confidential data disclosure problem arises because there exists no authorization
rule denying Jane to write the data referred by the predicate of path expression of R3 which
denotes the conditions of addressing the confidential data in company.xml.

To the best of our knowledge, there is no previous work discussing this confidential data dis-
closure problem. In order to solve this problem, the security manager is required to add such
authorization rules to the original authorization rules. However, this solution is not practical in the 4
case when structure of XML documents and access policy are complicated because many addi-
tional authorization rules are required to solve the problem. The overall authorization rules
become very complex. Furthermore, the security manager takes much time to test and confirm
whether there exists no confidential data disclosure problem when applying the original and addi-
tional authorization rules to the XML documents. Detection of XML data update that causes the
above security problem is a better solution. Here, we call such XML data update as unsecured-up-
date. In this paper, we focus on the unsecured-update problem.

The objective of this paper is to propose an algorithm that decides whether a given update re-
quest against an XML document is not unsecured-update request and is permitted under the re-
questor’s access control policy. If the algorithm decides that the update request is the unsafe-up-

—_—2 —

Preventing Confidential Data Disclosure in XML Document Modification

company

name

50125 Sara Manager 62000 s0478 John Clerk 25000 51064 Tanaka Clerk 31000
(a) An example of an XML document (company.xml).
R1: <Jane, company.xml, /company, rw, +, cascade>
R2: <Jane, company.xml, / /branch{name="London”]/ / staff[rank="Manager’]/salary, rw, -, cascade>
R3: <Jane, company.xml, / /staff/sid, w, —, cascade>
R4 <Jane, company.xml, //branchfname="Tokyo”]/staffs, rw, —, cascade>

(b) An example of access rules for the sample document .

company

50125 Sara Manager $0478 John Clerk 25000
(¢) The view over company.xml for Jane

Figure 1: An example of a sample XML document, its authorization rules and
the view of the sample document.

date request or the requestor has no privilege to execute the update request, the algorithm will re-
ject the update request. Otherwise, the algorithm passes the update request to XML database sys-
tem.

The rest of the paper is organized as follows. In Section 2, we give formal definitions of XML
tree, tree patterns, tree embedding, authorization rules, and update requests. Section 3 presents a
formal definition of the problem. In Section 4, we present an algorithm that computes security
labels that impose update constraints for some document nodes for given XML tree under given
access control policy of a user. Section 5 presents an algorithm that decides whether given update
request is not unsecured-update request and is permitted under the user’s access control policy.
Finally, the last section concludes this paper.

2. Basic Concepts and Definitions

2.1 Trees and Tree Patterns

We view an XML document as an unranked (in the sense that the number of children nodes of a
particular node can be unbounded), ordered tree. Each node in the tree corresponds to an ele-
ment, attribute or value. The edges in the tree represent immediate element-subelement or

737

Journal of the Faculty of Global Communication Siebold University of Nagasaki No.6

element-value relationships. Attribute nodes and text values can be handled similarly to element
nodes. ,

Definition 2.1 An XML document is a tree ¢ <V, E, r> over an infinite alphabet X called
XML tree, where

® V,is the node set and E; is the edge set;

® 7, € V,is the root of #; and

® cach node v in V; has a label (denoted as label,(v)) from =. 1

We assume that each text node is labeled with its textual value. Given an XML tree t = <V, E,
7>, we say that ¢ = <V, E;, 7> is a subtree of tif V,,C V,and Er = (Vy, X V) NE,.

In this paper, we discuss a fragment of XPath queries (called a Simple XPath). This fragment
consists of label tests, child axes(/), descendant axes(//), branches([1) and wildcards (*). Note
that XPath expressions with upward axis (e.g., parent and ancestor axis) can be transformed into
equivalent upward-axis-free ones [9], and are thus excluded from our discussions. The simple
path can be recursively represented by the following grammar: p—>I|*[p/p|p//p|p/p], where lis a
node label from X . ‘

Definition 2.2 (Tree Patterns): A tree pattern p is a tree <V, E,, 7, 0,> over X U{*’},
where V} is the node set and E}, is the edge set, and:
® Each node # in V, has a label from £ U{"*’}, denoted as label,(n);
® Each edge ein E, has a label from {°/’, °//’}, denoted as label,(e). The edge with label /
is called child edge, otherwise called descendent edge; and
® 7,, 0,€ V, are the root and output node of p respectively. |
For example, an XPath query company/* [name=“London”] | /staff [rank="“Manager”] /sala-
7y is represented as a tree pattern shown in Fig.2 (b), where the dark node is the output node. The
size of a tree pattern, written as [p|, is defined as the number of its nodes. Without loss of general-
ity, we refer to tree patterns as patterns in the rest of this paper.
We now define an embedding (also called pattern match) from a pattern to an XML tree as
follows:
Definition 2.3 (Tree Embedding): Given an XML tree ¢ <V}, E, 7> and a pattern p<V,, E,, ,,
0,>, an embedding from p to ¢ is a function emb: V, — V,, with following properties for every x, y
€ Vy
® Label-preserving: Vx€ V,, if label,(x) # *’, label,(x) = label,(emb(x));
® Structure-preserving: Ve = (v, y) € E,, if label,(e) = ‘/’, emb(x) is a child of emb(y)
in ¢ ; otherwise, emb(x) is a descendent of emb(y) int. N

The embedding emmb maps the output node 0, of p to a node emb(0,) in . We say that the subtree
sub (¢, p, emb) rooted by emb(o,) of tis the result of embedding. Note that sub(t, p, emb) can also
be seen as an XML tree. As an example, dashed lines between Fig.2(a) and (b) shows an em-
bedding and its result is shown in Fig.2(c). Actually, there could be more than one embedding
from p to . We define the result of p over ¢, denoted as p(#), as the union of results of all embedd-
ings, i.e., Ump.emplsub(t, p, emb)} where EMB is the set including all embeddings from p to #.
Furthermore, we define an empty pattern denoted by ¢ as the result of evaluating ¢ over any
XML tree is empty.

Preventing Confidential Data Disclosure in XML Document Modification

company

name

P&K Co. Ltd
———————— rank
sid Manager
s0125 Sara Manager s0478 John Clerk 25000
(a) The view v of Jane over company.xml (b) The tree pattern p of (c) A subtree which is
the example query the result of p over v.

Figure 2: Embedding of the tree pattern p on the view v.

2.2 Authorization Rules
We use the term access control policy, or simply policy, for a set of authorization rules. Each

authorization rule has the following format:
<subject, doc-id, path, priv, sign, prop>, where

® subject is a user name, a user group, or a role[101;

® farget denotes an XML document identifier;

® path denotes a path expression of XPath identifying nodes within the XML document;

® priv is either read denoted by 7 or read/write denoted by 7w;

® sign € {‘+’, ‘—’}, where '+’ denotes grant and ‘—’ denotes denial;

® prop is either cascade or no-cascade.

Authorization can be positive (granting access) or negative (denying access) to document
nodes of an XML document. The read privilege allows a subject to view a document node. The
write privilege allows a subject to insert/delete a document node, and modify content of a docu-
ment node. Authorization specified on a node can be propagated to all its descendant nodes (by
cascade option), or to only that node (by no-cascade option). The possibility of specifying authori-
zation with different sign introduces potential conflicts among authorization rules. A subject may
have two authorization rules for the same privilege on the same protected object but with different
signs. These conflicts can be either explicit or derived through propagation. Here, the conflict
resolution of the model is based on the following policies.

® Descendant-take-precedence: An authorization rule specified at a given level in the document hi-

erarchy prevails over the authorization rules specified at higher levels; and

° Dem'al-ta‘ke-precedence: In case conflicts are not solved by descendant-take-precedence policy,

the authorization rule with negative sign takes precedence.

We apply denial-by-default policy that denies any access request for a document node whose
authorization cannot be derived from the authorization rules defined by the security manager.

45_

Journal of the Faculty of Global Communication Siebold University of Nagasaki No.6

2.3 Update Requests

An update request is defined as follow:

<subject, op, doc-id, path, content>, where

® subject is a user name, a user group, or a role;

® 0p is insert-before, insert-after, append, update, rename, or remove operation; and
® doc-id is an XML document identifier;
® path denotes a path expression of XPath identifying the context node within the XML tree;

and

® content denotes either (7) name of an element / attribute, or (i) textual value of the node

to be written.

Table 1 explains details of the operation argument of an update request and necessary privileges

of a subject for executing the operation. In this paper, for simplicity we assume that the docu-

ments before and after update hold the same doc-id. We also assume that a subject is allowed to in-

sert, a node if she has read/write privilege on the node. There are two reasons for this assumption.

The first is that a subject needs to read the node she has written to confirm the write result. The

second is that a subject needs to confirm the target nodes before deletion.

operation

content

Necessary privilege

The insert-before operation in-
serts a new node as the preced-
ing sibling of the selected con-
text node.

Element or attribute
name for the new node.

The read/write privilege on the
new node. This privilege may be
propagated from the parent node
of the selected context node.

The insert-after operation inserts
a new node as the following si-
bling of the selected context
node.

Element or attribute
name for the new node.

The same as that of insert-before
operation.

The append operation appends a
new node as a child of the con-
text node.

Element name, attribute
name, or textual value of
the new node.

The read/write privilege on the
new node. This privilege may be
propagated from the ancestor of
the selected context node.

The update operation allows the
content of the selected context
node to be changed.

The new textual value.

The read/write privilege on the
selected context node.

The rename operation allows the
selected context node to be re-

named.

The new name of an ele-
ment or attribute.

The read/write privileges on the
selected context node.

The remove operation allows the
subtree rooted by the selected

context node to be removed.

The read/write privileges on the
selected context node and its all
descendant nodes.

Table 1: Necessary privileges for executing an update request

Preventing Confidential Data Disclosure in XML Document Modification

3. Problem Formulation

Let ¢ be an XML tree before update, and ¢’ be the XML tree after update. To address the con-
fidential data disclosure problem in ¢’, we need to identify information used to define how a node of
¢ is mapped to that of #’. We call this information a tree mapping, which is defined as follow.

Let N, be the set of deleted nodes of ¢, and N,4; be the set of nodes that are newly added to #’.
We call N - Ny, the set of source nodes. We also call N' - N,y as the set of target nodes.
Definition 3.1 (Tree Mapping): Let { be an XML tree before update and ¢’ be the XML tree
after executing update u. Let N, be the set of source nodes of ¢, and N?’ be the set of target nodes
of t’. tmap,: Ny~ Ny is a one-to-one total mapping from N, to Ny by . |

We now define an unsecured-update request that results in confidential data disclosure as follows.
Definition 3.2 (Unsecured-Update Request): Let IV; be the set of source nodes of XML
tree ¢ before update, and Ny be the set of target nodes of XML tree ¢’ after update, and tmap,: N; —
Ny is a one-to-one total mapping from N; to Ny by update request #. Let P; be an access policy of
subject s on XML tree ¢, permit;,; € N; be the node set of ¢ that is readable by s under P, and
permit;,» € Nt be the node set of ¢’ that is readable by s under P. u is an unsecured-update request
under P, if there existe € (N, — permit,,,) and e’ € permit,,suchthate’ = imap,(e) after ex-
ecuting #. 1

For example, u: <Jane, write, company.xml, |/staffl name=“Sara”1/rank, “Clerk”> is an un-
secured-update request under policy P = {RI, R2, R3, R4} because salary of Sara which is con-
fidential information becomes readable by Jane after executing #. There are two approaches to
solve this confidential data disclosure problem. The first approach is to detect whether there ex-
ists this problem after executing the user update request. However, the drawback of this solution
is overhead of roll back the update when the system detects that there exists this problem. The se-
cond approach is to investigate whether the user update request is an unsecured-update request
before passing the update request to the XML database system. In this paper, we focus on the se-
cond approach.

4. Security Labelling Algorithm

Given a document tree and access control policy of a user, we propose the LabelTree algorithm
(see Fig.3) that computes security labels for the document nodes that satisfied by path expres-
sions of authorization rules. In order to solve confidential data disclosure problem, we need to im-
pose update constraints on the node values and structural relationship between nodes that are
referred by path expressions of negative authorization rules. LabelTree also computes security
labels of negative authorization for these nodes. Based on these security labels, the algorithm com-
putes the view for the user by pruning out the nodes to which the user is not allowed to access. A
security label is defined as follows.

Definition 4.1 (Security Labels): A security label for a node #» of XML tree ¢ is represented
by a tuple of <sign, flag>, where

Journal of the Faculty of Global Communication Siebold University of Nagasaki No.6

® sign is either + or —; and .

® flag € {1, 0, -1} denotes type of security propagation, where value 1 denotes cascade,
value 0 denotes no-cascade, and value -1 denotes that this security label is applied to node #
while the security label with different sign is applied to the proper descendants of #. [

We define an undefined security label by ¢ . Given XML tree t = <V, E, > and the security
label set SL, we define 7/bl; as a labelling function that assigns a security label for read privilege in
SL U{# } toanodein V; We also define wlbl; as a labelling function that assigns a security label
for write privilege in SL U {4 } to a node in V;

Algorithm LabelTree (t, Ps) ‘
Input: XML tree t = <V, E;, re>, and access policy Ps = {R1, Re, .., Rm} of subject s on ¢.
Output: XML tree ¢ with security labels.

Method:

1. Initialize read and write labels of each v e V; with ¢.

2. For each Ri = <s, doc-idi, pathi, privi, signi, prop:> € Ps, where 1 <i<m do {

3. Let p =pathi

4. If there exists the set EMB of embedding from p = <V}, Ep, rp, 0p> to t then {
5. For each embr € EMB do {

6. For each v € Vp do {

7. If propi is cascade then flag = 1 else flag =0

8. If embr(v) is a parent node of the text node then flag =1

9. rlbl = <signi, flag>

10. If privi = ‘rw’ or privi = ‘w’ then wlbl = <sign,, flag>

11. If v # 0p and signi =~ then /* to prevent unsecured-update */
12. wlbl = <—, 0>

13. If ribl(embr(op)) = ¢ then riblembr(op)) = ribl

14. else rlbli(embr(op)) = CompareLabel (ribli(embr(op)), ribl)
15. If wibl(embr(op)) = ¢ then wibl(embr(op)) = wibl

16. else wibli(embr(op)) = CompareLabel (wlblembr(op)), wibl)
17. }

18. }

19. }

20. }

21. /* Remove t's nodes that are allowed to read by subject s */

22. ribl = <—, 0> /* denial-by-default policy */

23. Traverse ¢ in preorder, and for each node v encountered in the traversal, do {
24. If v has no child node then {

25. If (rlbl has negative sign) or (rlbl,(v) has negative sign) then {
26. Remove node v and continue traversing to v’s parent node.
27. }else{

28. 1f ribl(v) # ¢ then rlbl = ribli(v)

29. If v is visited from its parent then {

30. If ribl = <—, -1> then {

31. Assign <+, 1> as the read label for child nodes of v.

32. rlbli(v) = <, 0>

33. rlbl = <—, 0>

34. }

35. }

36. }

37. }

38. Initialize read labels of each v € V: with ¢.
39. return {.

Figure 3: The LabelTree algorithm

__8_~

Preventing Confidential Data Disclosure in XML Document Modification

Algorithm CompareLabel (orglbl, Ibl")
Input: The security labels orglbl = <sign, prop> and 1bl'= <sign', prop'>
Method:

1. If(orglbl =<+, 0> and Ibl’' = <—, 1>) or (orglbl = <—, 1> and [bl’ = <+, 0>) then {
2 CompareLabel = <—, -1>

3. else

4. If (sign =+ and sign’ =) or (Ibl' = <—, 1>) then CompareLabel = Ibl’

5 else CompareLabel = orglbl

6. return CompareLabel

Figure 4: The CompareLabel algorithm

company
<+, 1>

50125 Sara Manager 62000 50478 John Clerk 25000 51064 Tanaka Manager 31000
@

company

staffs

s0125 Sara Manager 50478 John Clerk 25000

(b)

Figure 5: The XML tree after labelling read and write security labels by the LabelTree
algorithm and the view after pruning the inaccessible nodes.

In [4], the logical core fragment of XPath was introduced, which was called Core XPath and
which includes the logical and navigational (path processing) features of XPath but excludes the
manipulation of data values (and thus arithmetic and string manipulations). Core XPath queries
can be evaluated in time O(l¢| - [p]), i.e. time linear in the size of the data tree ¢ and the query p.
Since Simple XPath of this paper is a subset of Core XPath, the complexity of Simple XPath que-
ries can be evaluated in time O(|¢| - |p|). Time complexity of processing steps 1 thru 20 is O(|#| -
|pl - |P|) where | P;| is the number of authorization rules of access policy P;. Time complexity of
processing step 21 thru 38 is O(|¢|). Therefore time complexity of LabelTree can be evaluated in
time O(l¢[- [pl-|P]).

Journal of the Faculty of Global Communication Siebold University of Nagasaki No.6

5. Update Request Checking Algorithm

Given an update request #pdreq of subject s, access policy P; of s on XML tree ¢, we propose the
UpdReqCheck algorithm (see Fig.6) that decides whether updreq is not an unsecured-update re-
quest and can be permitted under P..

Algorithm UpdReqCheck (t, Ps, updreq, Nodeset)
Input:

1. XML tree t =<V, E,, ri>,

2. access policy Ps = {R1, Ry, .., Rn} of subject son ¢, and

3. an update request updreq of s on t, where updreq = <s, op, doc-id, p, content>.
Output: Nodeset which contains the set of the context nodes used for executing updreq.

Method:
1. t= LabelTree (t, Ps)
2. Nodeset = {}
3. If there exists the set EMB of embedding from p = <V}, E,, rp, 0> to t then {
4, For each emb; e EMB do {
5. If (sign of seclbli(embj(op)) is positive) or

((seclbli{embj(op)) = ¢) and (there exists <+, 1> or <—, -1> assigned to the closest
ancestor of embj(op)) then { /* s is allowed to access the context node */
If (op € {update, rename}) then {
Nodeset = Nodeset U embj(op)
} else {
If op = remove then {
If there exists no security label with negative sign assigned to a descendant
0. of emb;(op) then {
Nodeset = Nodeset embj(op)
11. } else {/* For insert-before, insert-after, append */
12. count =0
13. For each Ry = <s, doc-id, pk, privk, signk, propr> € Ps, where
the output node opx of pr has the same name as the name
defined by content argument of updreq for the node to be inserted do {
Let p’ be the path expression derived from px by removing opr
from pk, and defining the parent node of opx as the output node.
14. If (op = append and embj(op) is satisfied by p’) or
(op € {insert-before, insert-after} and the parent node of emb;j(op)
is satisfied by p’) then {

2O oo

15. If signs is positive then count = count + 1

16. else {

17. count = -1

18. exit for

19. }

20. }

21.)

22. }

23. If count > 0 then {

24, Nodeset = Nodeset U embj(op)

25. } else {

26. If count = 0 then {

217. If there exists security label with positive sign assigned to
the closest ancestor of embj(op)) then {

28. Nodeset = Nodeset L emb;(op)

29. }

30. }

31.)

32. }

33. }

34.

35. }

36. return Nodeset

Figure 6: The UpdReqCheck algorithm

Preventing Confidential Data Disclosure in XML Document Modification

6. Conclusions

As authorization rules of existing XML access control model are defined based on node values
and the structural relationship between nodes of XML documents, confidential data disclosure
problem may arise by the unsecured-update that modifies values or the structural relationship be-
tween nodes referred by the authorization rules. In order to solve this problem, this paper has for-
malized the problem and proposed an algorithm that decides whether a given update request
against an XML document is not unsecured-update request and is permitted under the requestor’s
access control policy.

References

[1] E. Bertino, S. Castano, E. Ferrari, M. Mesiti, “Specifying and Enforcing Access Control
Policies for XML Document Sources,” WWW Journal, vol.3, n.3, 2000.

[2] E. Bertino, G. Mella, G. Correndo, E. Ferrari. “An infrastructure for managing secure up-
date operations on XML data,” In Proc. of 8%t ACM Symposium on Access Control Models and
Technologies (SACMATO03), pp.110-122, 2003.

[3] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati, “A Fine-Grained Ac-
cess Control System for XML Documents,” ACM TISSEC, vol.5, no. 2, 2002,

[4] G. Gottlob, C. Koch, and R. Pichler, “Efficient Algorithms for Processing XPath Queries”. In
Proc. 28th International Conference on Very Large Data Bases (VLDB’02). pp.95-106, 2002.
[5] M. Kudo and S. Hada, “XML Document Security based on Provisional Authorization,”
Proc.7th ACM Conf. Computer and Communications Security, pp.8§7-96, 2000.

[6] C.H.Lim, S. Park, S.H. Son, “Access control of XML documents considering update opera-
tions”, In Proc. of the 2003 ACM workshop on XML security, pp. 49-59, 2003. '
[7] M. Murata, A. Tozawa, M. Kudo, S. Hada, “XML Access Control Using Static Analysis,”
Proc. ACM Conf. Computer and Communications Security, pp. 73-84, 2003.

[8] OASIS XACML Technical Committee, “eXtensible Access Control Markup Language
(XACML) Version 2.0, http://www .oasis-open.org/specs/index. phpfxacmlv2.0 (Feb 2005) .
[9] D. Olteanu, H. Meuss, T. Furche, F. Bry, “XPath: Looking Forward,” In XML-Based Data
Management and Multimedia Engineering, EDBT Workshop, LNCS 2490, 109-127, 2002.

[10] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman, “Role-Based Access Control Models,”
IEEE Computer, 29(2), pp.38-47, 1996.

[11] I. Tatarinov, Zachary G. Yves, Alon Y. Halevy, Daniel S. Weld. “Updating XML”. In ACM
SIGMOD 2001 May 21-24, Santa Barbara, California, USA.

[12] W3C (2000). Extensible Markup Language (XML) 1.0 (Second Edition). Available at
http://www.w3c.org/TR/REC-xml (Oct 2000) .

[13] W3C (1999). XML Path Language (XPath) Version 1.0. Available at http://www.w3c.
org/TR/xpath (Nov 1999).

