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. Abstract
The purpose of the present paper is to give the standpoint of geometry to BEu- -
clidean Algorithm. Euclidean Algorithm is well known to the public.” The author
gives the new view to Euclidean Algorithm by the theory of the structure of se- -
“quences developed by the author 12 years ago.
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Introductlon : :

The author studied the S-structure of a sequence of numbers[3,4 5] In [3], Arithmetic
and geometric sequences were studied in detail and sequences defined by a difference
equation with three terms were classified in, three types on 2-dimensional Euclidean space.
In [4], sequences defined by a difference equation with four terms were classified in four
types on 3-dimensional Euclidean space. In [5], the author treated more general sequences,

which aren’t expressed uniform as some difference equation. In there, the sub sequences of

the original sequence were studied and the local S-structure was defined. The S-structure
and local S-structure are the object with the geometrical meaning. :

In the first section, the general theory of S-structure of 2-dimensionable sequences is
expressed. In the second section, Euclidean Algorithm is stated and in the final section
.the geometrlcal objects, it is a hyperbolic curve, corresponding to Euclidean Algorlthm A
~are expressed.

1 S-structure of 2-dimensionable sequences

We are given the notion of S-structure of it by [3]. Let A = {a,} be a 2-dimensionable
sequence of numbers. We con51dered the map 1 Ain —> a line [ A( )t Gng2 = Qpp1TH+any.
Then we defined

Definition 1.1 The set '
(1.‘1) . . ﬂlA(n)

is called-S-structure of the sequence A.-

Further we deﬁned the local S- structure of a sequence A as follows:
Let (Zn,yn) be the intersection point of lines A( ) and l4(n + 1). This point is the

S-structure of the sub Sequence n, Gn+1, Gn+2; On+3- We call 1t; the sub ‘S-structure of it.
Then we deﬁne
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Definition 1.2 The set
(1.2) U@n, vn)

is called (2-dimensional) local S-structure of the sequence A.

Well, let A = {a,} be a 2-dimensionable sequence defined by a difference equation
Ont2 = Toln41 + Yoan With real constants zg,yo. Then it is clearly true that (zn,yn) =
(zo,yo0) for all n. Therefore the 2-dimensional local S-structure of A is a single point
(2o, o) from (1.2). According to [5], sequences defined by the above difference equation
are characterized two types with respect to the S-structure. One is the type that S-
structure is a single point (zg,yo), but the other is the type that S-structure is a line of
the form r? = rz + y. And sequences that S-structure is a line are only geometric ones.
Thus we have '

Proposition 1.1 Let A = {a,} be a 2-dimensionable sequence defined by a difference
equation Gnio = ToGn41 + Yoan with real constants zg,yo. Then the S-structure of A
coincides with the local S-structure of itself, namely,

() = J@n,va) = (@0, 30).

n

Now, we shall express the sub S-structure by its term. The sub S-structure (z,,y») is
the intersection point of lines [4(n) and l4(n+1), and so it is the solution of the following
simultaneous linear equation

Ap 1T + CrY = Apya
(1.3)

Ap+2T + Qpi1Y = Qp43.

Since the sequence A is the 2-dimensionable one, the equation

An4+18p+2 — Qplny3

(1.4) <$n> _ 7i1 ~ Gnlnt2

2
Qp+4+10n43 — an+2

2
Qni1 — OnOnpy2

is satisfied.

On the other hand, since the sub S-structure (Z,41,¥n+1) iS the intersection point of
la(n+1) and l4(n + 2), for three terms ant1, @nt2, @n3 the following simultaneous linear
equation

Tnln+2 + Ynln41 = Qn43 -
(1.5)

Tn4+10n+2 + Ynt10n41 = Qn43
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is satisfied. Therefore the following equation -

(1.6) ‘ : (Zn41 = Tn)@ny2 + (Ynt1 = Yn)@ns1 =0
is satisfied. Thus we have

Theorem 1.1 Let A = {a,} be a 2-dimensionable sequenée._ Then the sub S-structure
of A is written in the form (1.4) and the binomial equation (1.6) is also satisfied for all

Here we put
(L.7) ' - D(n) = Tnt1Yn — Tnlnt1-

It D( ) = 0, the proportional relation z, : Yy, = Zni1 : Yny1 IS satisfied. ‘Therefore if
(Zn, Yn) # (Tna1, Yns1) 18 satisfied, the line L4(n + 1) passes the origin. Namely, a,,3 =0
s satisfied. ‘ .

If, for all n, D(n) = 0 and (Zn,Yn) # (Tnt1,Yns1) are satisfied, then ap43 = 0 is also
‘satisfied for all n. But the sequence A is 2-dimensionable so that a,.3 = 0 (n > 1) is
contradictory. Thus we have -

Proposition 1.2 Let A = {a,} be a 2-dimensionable sequence. If D(n) = 0 is sat-
isfied for all n, then its all sub S-structures are the same intersection point, namely, its
local S-structure is a singleton.

Here we denoted the intersection point of Proposmon 1.2 by (%0;Yo)- Then we have,
from Proposition 1.1 and 1.2, : '

Theorem 1.2 A 2-dimensionable sequence A = {d;',} is deﬁhed by the difference equa-
ton Gny2 = ToGnt1 + Yoan with real.constants zo,yo, of and only if D(n) = 0 is satisfied
for all n. Then (%0, y0) s the local S-structure of A. :

Next if D(n) #0is satlsﬁed then from (1.5), the equation

3

Tnt1 — T : Yn — Yn+1
(18) Oniyl = = - Any3 and Ap4o = kL - —An43 .
Tnt1Yn — Tn¥Ynt1 : "Tn+1Yn — Tnln+l

" are satisfied. Therefore we have

Proposition 1.3 Let A = {an} be a 2-dimensionable sequence. If D(n) # 0 is satis-
fied for all n, then (1.8) is satisfied with respect to three terms ani1, ni2, Gnys-

Lastly, we apply (1.8) to I, Or Yn of (1.4), and we have

(1.9 R e 1 R

] a‘n+3a
(mn-f-lyn - znyn—i—l)yn ~

where y, # 0.
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2 Euclidean Algorithm
We know FEuclidean Algorithm. 1t is dependent on the following theorem.

Theorem 2.1 Let a,b(0 < a < b) be arbitrary integers. Then there exist integers q
and r, uniquely, satisfying the following equation

b=ga+7 (0<r<a)

To obtain the greatest common divisor(G.C.D.) of a,b we can apply the theorem to
the quotient ¢ and the remainder 7, and we have the following system of the quotients
and remainders

b = qua+r, (0<7 <a)
= Qo1 + 72 (0§T’2<T‘1)
T, = g@r2+713 (0<713<7))
Th-2 = Qn-1Tn-1 +Tn (0 S Th < 'rn—l)
Th—1 = (Qn+1Tn + Tn+1 (Tn+1 = O)

This series b > a > 1) > 7y > -+ > 1y > Ty > Tpy1 = 0 is the monotone decreasing
sequence. In this time, r, is the G.C.D. of a and b.

In the next section, we consider the S-structure of the above sequence b,a, 7y, -+ , 749, 0.
Hereafter, we call this sequence Euclidean algorithm.

3 S-structure of Euclidean Algorithm

We want to study about the S-structure of the above sequence ” Euclidean algorithm”.

First, we assume that integers a and b (a < b) satisfy the equation
(3.1) : b=ga+1.

In this time, we have the sequence as Euclidean algorithm

(3.2) b,a,1,0
and these integers a, b are relatively prime, namely, gcd(a,b) = 1.

From (1.4), its S-structure (z,y) is
. —a 1
(3.3) . (z,y) = (b_——aE’ m) )
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where b.— a2 +#:0 because that if b— a2 = 0, from (3.1), the equations a2 = ga + 1 and

q = a— — are satisfied. However; a is an integer so that ¢ is not integer. This is incorrect.
a .

Now we shall study the S-structure (3:3). We see ' 0, therefore we have

. 1 z?
- (3.4) o : ,yz ¥
a=—
. y ‘
From (3.1) and (3.4), we have )
| 1 g2 T
3.5 S+ =—g=+1..
(35) | y. ¥y
Therefore the equation
(3.6) ' -y’ +qry+y=0 (g:a positive integer)

holds good.

- Conversely, if the S-structure (3.3) of a sequence b, a,1,0(a < b) is on the hyperbohc
curve (3.6) in Euclidean Space R?, then b= ga + 1 (g : a positive integer) is satisfied.
Therefore the sequence b, a, 1, 0(a < b) is Euclidean algorithm. Thus we have

Theorem 3.1 A sequence b,a,l O(a < b) is Euclidean algorzthm if and only if its
S-structure 1s on the hyperbolic curve (3.6) in Euclzdean Space RZ.

Next we consider the case that, the sequence
6,b,0,0 (c>b>a>0)

is Euclidean algorithm. Then

(3.7 ’ c=qb+a (q :a positive integer)
and
(3.8) o : b=gqa (g2 :a positive integer)

are satisfied. This means that ged(b,c) = a.
In this case, its S-structure (z,y) is, from (1.4)

39 (a:,y)‘=<_ab (1—21)2)"

ca —b? ca

However, from (3.7) and (3.8), we have

, —ab . a? 7 —q5 o 1 )
3.10 y) = : = A : .
(310 @) (ca—b2 Ca—bz)' (qlqﬁl—q%’»qlqzﬂ—ﬁ
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This sequence has the same S-structure as the sequence ¢;¢; + 1, ¢2, 1,0 has. Therefore
the S-structure (3.9) is on the hyperbolic curve

(3.11) -y +qzy+y=0.
Thus, from Theorem 3.1 we have

Theorem 3.2 The sequence ¢,b,a,0 (¢ > b > a > 0) is Euclidean algorithm if and
only if the S-structure (3.9) is on the hyperbolic curve (38.11).

Lastly, we treat the case that the sequence c¢,b,a,1,0 (¢ > b > a > 1) is Euclidean
algorithm. This sequence satisfies

(3.12) c=qb+a and b=ga+1(q,¢q: positive integers).

In this case, ged(b,c) = 1.

We will consider the local S-structure of it because that, in general, S-structure is null
set in this case. The local S-structure is the solution of the following system

fa=br+cy az + by
(3.13) (I)’{lz'ax+by and (H){O—x+ay .

We have the solution

(3.14) (1)( —, bl;""‘Z) and ()( a2,b—_1—a§).

From (3.14)-( II) and Theorem 3.1, the sub S-structure of the sub sequence b,a,1,0 is on
the hyperbolic curve

(3.15) -y +qry+y=0.

We will study the sub S-structure (3.14)-( 1 ). We put

ab—c b — a?
3.16 = = )
(3.16) TTr_w YT v
Since the equation b # 0 is true, we put t = % and the following system from (3.12)
c 1
(3.17) b =q+t and 1=gqt+ b

holds good. Further from the first equation of (3.16),

' e __ ¢ 4_cl
(3.18) p= b ¥ _ T bb
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is satisfied. From (3:17) and (3.18), we have

B (3.19) - R g o= —@t* —qpt +q
' | Z+qt—1

From the same manner, we have

t2 4+ qot — 1
(3.20) - ﬁm
- From (3. 19) and (3.20), the equations
(3.21) L @+t )t (@ L g) =0
and . | ,.
(3.22) o (- it + (qu wt-(y-1) =0

are satisfied.
Next, from (3.22) x (z + g2) — (3.21) X (y — 1), we have

(3.23) - . | (z+@xm—qﬂﬁ+w—1Xm—qﬂ=0f

Therefore the equation

: . ’ 1—
(3.24) | t=— Y
T+ q
is satisfied. :
Finally, from (3.21)(or (3.22)) and (3.24), we have the hyperbolic curve

(3.25) ‘ -y +qzy+ 2+ )y +er—1=0.
The converse is also true. Thus we have the following theorem

Theorem 3.3 The sequence c,b,a,1,0 (c >b>a>1) s Euclzdean algorithm . zf and
only if its local 'S-structure (3.14) satisfies as follows:
(1) its sub S-structure of sub sequence.b,a,1,0 is on the hyperbolzc curve (3 15), where
b= QQG/ + 1.
(2) its sub S-structure of sub sequence ¢, b, a, 1 is on the hyperbolic curve (3.25), where
c=qb+a, -

N .

Moreover, for the sequence d, ¢, b, a, 0, its sub S-structure of sub sequence c, b, a,‘O is

‘ —ab a?
.2 o
(3.26) (ca —b?’ 'ca—bz)"
-and its sub S-structure of sub sequence d,c, b, a is
' be—ad —b+ca\
2 : -
(3- 7 (c?—bd’ c?—bd) :

In this time, from the same reason for Theorem (3.2), we have the follpwi_ng' theorem
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Theorem 3.4 The sequence d,c,b,a,0 (d > ¢ > b > a) is Euclidean algorithm if and
only if its local S-structure satisfies as follows:
(1) its sub S-structure (3.26) of sub sequence c,b,a,0 is on the hyperbolic curve (3.15),
where ¢ = g2b + a.
(2) its sub S-structure (3.27) of sub sequence d,c,b,a is on the hyperbolic curve (3.25),
where d = q1c + b.
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