雑音を含むカオス時系列データの最小埋込み次元決定方法

伊藤憲一

A Method for Determining the Minimum Embedding Dimension of Chaotic Time Series Corrupted with Measurement Noise

Ken-ichi ITOH

あらまし カオス時系列データの最小埋込み次元を求める方法として誤り近傍法があるが、この方法は雑音の影響を受けやすいという問題がある。本論文では、この問題解決を図るため、誤り近傍法をもとにした 雑音にロバストな方法を提案する。Hénon map および Lorenz model から生成されるカオス時系列データにガ ウス分布型雑音を加えたデータ、ならびに指尖脈波のデータを用いて評価実験を行い、提案手法の有効性を 確認した。

キーワードカオス、時系列データ、埋込み、誤り近傍法、指尖脈波

1. まえがき

カオス時系列データの解析においては,通常 埋込みの手法を用いて相空間上にアトラクタの 再構成が行われる[1],[2]。ある1変数の時系列 データから最小埋込み次元を求めるために,こ れまで多くの研究が行われてきた。代表的な方 法として,GP法[3],特異値分解法[4],誤り近 傍法[5]などがある。しかしながら,これらの 方法は,最小埋込み次元の決定においてやや客 観性に欠けるという問題がある。

この欠点をなくすために,誤り近傍法を基に した改良手法が,Caoにより提案された[6]。こ の手法は次のような利点を有している。すなわ ち,(1)埋込みのための時間遅れ以外は,何 ら主観的なパラメータを含んでいない,(2) 利用できるデータの数にあまり依存しない,

(3) 高次元のアトラクタから生じた時系列 データに対しても適用できるなどである。しか し,実在する時系列データにCaoの手法を適用 する場合,次のような問題がある。すなわち, 最小埋込み次元の値は,再構成した相空間にお けるある点と,その点に最も近いただ一つの点 との間の距離を用いて推定されるため,時系列 データに含まれる雑音に大きく影響を受ける。 実データには通常雑音が含まれているため,そ のようなデータの最小埋込み次元を正確に決定 することは困難である。

本論文では、Caoの手法を基に、雑音を含む カオス時系列データの最小埋込み次元を決定す る方法を提案する。更に、Hénon map[7]および Lorenz model[8]から生成されるカオス時系列 データにガウス分布型雑音を加えたデータ、な らびに指尖脈波[9]のデータを用いて評価実験 を行い、提案手法の有効性を示す。

2. CAOの手法

ここでは、時系列データから最小埋込み次元 を決定するために、Caoにより提案された手法 を説明する。

ある1変数の時系列データ $x_1, x_2, ..., x_N$ から,一定の時間遅れ τ を用いて次のd次元ベクトルを作成することにより,アトラクタの再構成を行うことができる[1],[2]。dを埋込み次元と呼ぶ。

$$y_i(d) = (x_i, x_{i+\tau}, \dots, x_{i+(d-1)\tau}) ,$$

$$i = 1, 2, \dots, N - (d-1)\tau$$
(1)

まず,誤り近傍法[5]の考え方から類推され る次式の量a(*i*,*d*)を計算する。

$$a(i, d) = \frac{\left\| y_i(d+1) - y_{n(i, d)}(d+1) \right\|}{\left\| y_i(d) - y_{n(i, d)}(d) \right\|},$$

$$i = 1, 2, \dots, N - d\tau$$
(2)

ここで, || · || は最大ノルムを表す。すなわち, || $y_k(m) - y_l(m) = \max_{0 \le j \le m-1} |x_{k+j\pi} - x_{l+j\pi}|$ である。

 $y_i(d+1)$ は、埋込み次元d+1におけるi番目の再構成ベクトルを表す。すなわち、 $y_i(d+1) = (x_i, x_{i+\tau}, \dots, x_{i+d\tau})$ である。

 $n(i,d) (1 \le n(i,d) \le N - d\tau)$ はある整数であ り,再構成されたd 次元の相空間の中で,最 大ノルムで測った時の $y_i(d)$ の最近傍点が $y_{n(i,d)}(d)$ であることを示す。

次に, a(i,d)の平均値E(d)を計算する。

$$E(d) = \frac{1}{N - d\tau} \sum_{i=1}^{N - d\tau} a(i, d)$$
(3)

さらに, d 次元からd+1 次元への変化を定 量化する指標として, 次式のE1(d) を計算す る。

$$E1(d) = E(d+1) / E(d)$$
(4)

時系列データがあるアトラクタから生じた ものであれば, d がある値 d_0 より大きくなっ たときにE1(d) が収束し, d_0+1 がこの時系列 データの最小埋込み次元となる。

決定論的なデータと確率的なデータを区別

するために, もう1つの指標*E**(d) が用いら れる。

$$E^{*}(d) = \frac{1}{N - d\tau} \sum_{i=1}^{N - d\tau} \left| x_{i+d\tau} - x_{n(i,d)+d\tau} \right|$$
(5)

さらに、次式の指標E2(d) が計算される。

$$E2(d) = E^*(d+1) / E^*(d)$$
(6)

ランダムデータの場合,過去の値と将来の 値とが独立であるから,いかなるdに対して もE2(d)は1になる。一方,決定論的なデー タの場合,E2(d)はdに関係があるため, $E2(d) \neq 1$ となるdが存在する。

ある時系列データの最小埋込み次元を決定 し、同時に決定論的データとランダムデータ を区別するためには、E1(d) とE2(d) の両方を 計算する必要がある。

3. 提案手法

Caoの手法は、まえがきで述べたように従来 の手法に比べていくつかの利点があり、人工的 につくられた時系列データの最小埋込み次元を 決定するには大変有効である。しかし、実在す る時系列データにCaoの手法を適用するのは困 難と考えられる。すなわち、Caoの手法では再 構成した相空間において、ある点y_i(d) に最も 近いただ一つの点が選択され、式(2)のa(i,d) の値が計算される。このため、a(i,d) の値は 実在する時系列データに通常含まれている雑音 に大きく影響を受け、E1(d) の値を正しく計算 するのは困難と考えられる。

ここでは、Caoの手法を基に、時系列データ に含まれる雑音にロバストな最小埋込み次元決 定方法を提案する。d 次元の相空間において、 ある点 $y_i(d)$ の近傍点を近い順にk 個探索し、 これを $y_{n_j(i,d)}(d)$ (j=1,2,...,k) とする。近傍 点の探索には、ユークリッド距離を用いる。 $y_i(d) と y_{n_j(i,d)}(d)$ との間のユークリッド距離の 平均値を、次式により計算する。

$$z_{i} = \frac{1}{k} \sum_{j=1}^{k} \left\| y_{i}\left(d\right) - y_{n_{j}(i,d)}\left(d\right) \right\|$$
(7)

- 24 ---

次に,短時間sを経過した後の $y_{i+s}(d)$ と $y_{n_j(i,d)+s}(d)$ との間のユークリッド距離の平均値を,次式により計算する。

$$z_{i+s} = \frac{1}{k} \sum_{j=1}^{k} \left\| y_{i+s}(d) - y_{n_{j}(i,d)+s}(d) \right\|$$
(8)

式(3)の代わりに次式を用いて, E(d)を計算 する。

$$E(d) = \frac{1}{N - (d-1)\tau - s} \sum_{i=1}^{N - (d-1)\tau - s} \frac{z_{i+s}}{z_i}$$
(9)

また,式(5)の代わりに次式を用いて, *E^{*}(d*) を計算する。

$$E^{*}(d) = \frac{1}{k(N - (d - 1)\tau - s)} \cdot \sum_{i=1}^{N - (d - 1)\tau - s} \sum_{j=1}^{k} \left| x_{i + (d - 1)\tau + s} - x_{n_{j}(i, d) + (d - 1)\tau + s} \right|$$
(10)

E1(d) とE2(d) の計算には,式(4)と式(6)を そのまま用いる。

以上のように,提案手法では,再構成した 相空間において複数個の近傍点を探索し、こ れを時系列データの最小埋込み次元の決定に 用いるため、時系列データに含まれる雑音に ロバストであると想定される。提案手法で は、近傍点の数k をいくつに設定するかにつ いての検討が必要である。k が小さすぎると E1(d)の値は雑音に大きく影響を受ける。一 方, k が大きすぎると, y_i(d) から離れた点が $y_i(d)$ の近傍点として選ばれるため、E2(d)の 値はdの値に関わらずほぼ1になり、決定論 的データとランダムデータとを区別すること が不可能となる。kの最適値は、調査対象と なる時系列データにある程度依存すると考え られるため、試行実験によりkの値を決定す ることが重要となる。

4. 評価実験

提案手法の有効性を確認するために,Hénon map[7]およびLorenz model[8]から生成される時 系列データにガウス分布型雑音を加えたデー タ,ならびに指尖脈波[9]のデータを用いて評 価実験を行った。 Hénon mapは, 次の2次元写像である。

$$x_{n+1} = y_n + 1 - Ax_n^2 ,$$

$$y_{n+1} = Bx_n$$
(11)

式(11)において,パラメータ値A=1.4, B=0.3,初期値 $x_0=0.3$, $y_0=0.3$ としたとき Oxを時系列データとした。

Lorenz modelは、次の3変数微分方程式である。

$$\dot{x} = -\sigma(x - y) ,$$

$$\dot{y} = -y - xz + rx ,$$

$$\dot{z} = xy - bz$$
(12)

式(12)において、パラメータ値 $\sigma=10$ 、 r=28、b=8/3、初期値x=0.1、y=0、 z=0、時間刻み $\delta t=0.01$ として4次のルン ゲ・クッタ法でxの時間変化を求め、これを時 系列データとした。

雑音データを生成するために、上記のHénon mapとLorenz modelの時系列データに、1%と 3%のガウス分布型雑音を加えた。時系列デー タのデータ長Nは、1,000と10,000に設定し た。時間遅れτは、Hénon mapでは1に、Lorenz modelでは10に設定した。経過時間sは、τと 同一とした。

Hénon mapおよびこれにガウス分布型雑音を 加えた時系列データの相図を図1に示す。 Lorenz modelおよびこれにガウス分布型雑音を 加えた時系列データの相図を図2に示す。

指尖脈波のデータについては、これまでの研 究[9]によりカオス的特徴を有することが指摘 されており、最小埋込み次元は4であると推定 されている。

本実験では、3人の健常者の指尖脈波について、各々安静状態で測定したデータを用いた。 データのサンプリング時間は5msである。パラ メータN, τ , s の値は、Lorenz modelの場合 と同一とした。

指尖脈波データの相図を図3に示す。

本実験では、まず近傍点の数kの値を決定す るために、Hénon mapおよびLorenz modelの

- + 1% Gaussian white noise
- + 3% Gaussian white noise

Hénon mapの相図 図1 Fig. 1 Phase plots of the Hénon map.

Original data

+ 1% Gaussian white noise

図 2 Lorenz modelの相図 Fig. 2 Phase plots of the Lorenz model.

+ 3% Gaussian white noise

Fig. 3 Phase plots of the pulsation of human finger capillary vessels.

データ,指尖脈波データ,ランダムデータを用 いて, E2(1) とk の関係を調べた。なお,指尖 脈波データは,図3のSubject Bのデータを使用 した。結果を図4に示す。ランダムデータの場 合,近傍点の数k の値に関わらず, E2(1) の値 はほぼ1となる。一方,Hénon mapおよび Lorenz modelのデータ,指尖脈波データの場 合,kがデータ長Nの約10%以下では,E2(1)の値は1より小さくなる。kがNの5%になる と,E2(1)の値は0.5から0.6の間となる。本実 験では,雑音にロバストであり,かつ決定論的 データとランダムデータとを区別できるように するため,kの値をNの5%に設定した。

Hénon mapのデータについて, E1(d) と埋込 み次元d との関係を求めた結果を図5に示す。 図5において,従来手法とはCaoの手法を意味 する。これは、以降の図でも同様である。 Lorenz modelのデータについて, El(d) とd と の関係を求めた結果を図6に示す。図5, 図6 から, 雑音を加える前のオリジナルデータに対 しては, 従来手法および提案手法ともに最小埋 込み次元を正しく決定できることがわかる。す なわち, Hénon mapの場合は2であり, Lorenz modelの場合は3である。しかし, ガウス分布 型雑音を加えたデータに対して従来手法を用い ると, El(d) が収束するd の値は正しい値より も大きくなる。従って, 従来手法は雑音を含む データに対して有用ではない。一方, 提案手法 は, ガウス分布型雑音を加えたデータに対して も最小埋込み次元を正しく決定できる。

指尖脈波データについて, E1(d) と埋込み次 元d との関係を求めた結果を図7に示す。提案 手法では,これまでの研究[9]の結果と同様に 最小埋込み次元はほぼ4となる。一方,従来手

図 4 近傍点の数とE2(1)の関係 Fig. 4 E2(1) vs. number of nearest neighbors.

- 図 6 Lorenz modelにおける埋込み次元とE1(d) の関係
- Fig. 6 *E*1(d) vs. embedding dimension for the Lorenz model.

の関係

Hénon map.

Fig. 5 E1(d) vs. embedding dimension for the

図 7 指尖脈波データにおける埋込み次元と*E*1(d) の関係

Fig. 7 *E*1(d) vs. embedding dimension for the pulsation of human finger capillary vessels.

法を用いると, E1(d) が収束するd の値は4よ りも大きくなり, 誤った結果となる。この誤り は, 指尖脈波データに含まれている雑音に起因 するものと考えられる。

以上の評価実験より,提案手法は時系列デー タに雑音が含まれる場合でも最小埋込み次元を 正確に決定できることを確認した。

5. むすび

本論文では、Caoの手法を基に、雑音を含む カオス時系列データの最小埋込み次元を決定す る方法を提案した。更に、Hénon mapおよび Lorenz modelから生成されるカオス時系列デー タにガウス分布型雑音を加えたデータ、ならび に指尖脈波のデータを用いて評価実験を行い、 提案手法の有効性を示した。

今後の課題は,提案手法を他の実データにも 適用し,評価を行うことである。

文 献

- F. Takens, "Detecting strange attractors in turbu-lence," in Dynamical Systems and Turbulence, eds. D. A. Rand and L. S. Young, *Lecture Notes in Mathematics*, vol.898, pp.366-381, Springer, Berlin, 1981.
- [2] T. Sauer, J. A. Yorke, and M. Casdagli, "Embedology," J. Stat. Phys., vol.65, no.3,4, pp.579-616, 1991.
- [3] P. Grassberger and I. Procaccia, "Measuring strange-ness of strange attractors," *Physica*, vol.9D, pp.189-208, 1983.
- [4] D. S. Broomhead and G. P. King, "Extracting qualita-tive dynamics from experimental data," *Physica*, vol.20D, pp.217-236, 1986.
- [5] M. B. Kennel, R. Brown, and H. D. I. Abarbanel, "Determining embedding dimension for phase-space reconstruction using a geometrical construction," *Phys. Rev. A*, vol.45, no.6, pp.3403-3411, 1992.
- [6] L. Cao, "Practical method for determining the mini-mum embedding dimension of a scalar time series," *Physica D*, vol.110, pp.43-50, 1997.

- [7] M. Hénon, "A two-dimensional mapping with a strange attractor," Commun. Math. Phys., vol.50, pp.69-77, 1976.
- [8] E. N. Lorenz, "Deterministic non-periodic flow," J. Atmos. Sci., vol.20, pp.130-141, 1963.
- [9] I. Tsuda, T. Tahara, and H. Iwanaga, "Chaotic pulsa-tion in human capillary vessels and its dependence on mental and physical conditions," *Int. J. Bifurca-tion and Chaos*, vol.2, no.2, pp.313-324, 1992.