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Abstract

Thesis has:
Preface, Introduction, six Chapters and References.
The title of chapters
. Preliminaries: Finsler, Lagrange and generalized Lagrange spaces.
. The notion of Singular Finsler Spaces.
. Singular Randers Spaces.
. Variational Problem in the Singular Lagrange Spaces.
. On the Connections of singular Finsler spaces.
. Generalized Singular Finsler Spaces.

DU N

In Preface I described the history of the subject and the geometricians who worked in this field and
the main problems which must be solved. Therefore the abstract is as follows, which numbers in [ ] and
() are refered to the P.h.D Thesis:

Preface

The notion of singular Finsler space was not defined till now. This is very clear in the case of singular
Riemannian spaces. In this respect some remarkable papers were published by: Gr.Moisil, V.Oproiu
etc.[58,72]. Other aspects of the partial degenerate Finsler spaces were studied in the paper [Atanasiu[2]].

In this Ph.D.Thesis we define the concept of singular Finsler space, as a natural extension of singular
Riemannian space. We study the variational problem of the (nonregular) Lagrangian defined as the
square of the fundamental function F of the space SF™ and the law of conservation of the energy of
space SF™. The theory is applied in the case of geodesics of mentioned space. We prove the existence of
the spaces SF™ and give some examples like singular Randers spaces. The generalized singular Finsler
spaces are introduced and studied, too.

The Lagrange spaces were introduced and studied by J. Kern[37] and R.Miron[47,48,49] in order
to geometrize a fundamental concept in Analytical Mechanics. A Lagrange space L™ = (M, L(z,y)) is
defined as a pair which consists of a real, smooth n—dimensional manifold M and a regular Lagrangian
L :TM — R. It comes out that a Finsler space is a Lagrange space, but not conversely since the
Lagrangian L may be not homogeneous with the respect to the variables (y%), i =1,2,--- ,n.

The fact that the Finsler spaces are particular Lagrange spaces suggested the developing of the
geometry of the Lagrange spaces by extending the methods which have been used in the study of the
geometry of Finsler spaces. In this way one can study sufficiently general regular Lagrangians which
appear in mechanics, electrodynamics, optimal control etc.

The geometry of Lagrange spaces gives a model for both the gravitational and the electromagnetic
field in a very natural blending of the geometrical structure of the space with the characteristic properties
of these physical fields. This is possible due to of the utilization of some specific Lagrangians together with
some fundamental concepts from the geometry of the total space TM of the tangent bundle (TM, 7, M)
as is for instance, the Liouville vector field, tangent structure etc.

As is expected, the variational problem formulated for the action integral of the regular Lagrangian
L(z,y) of a space L™ leads to the Euler-Lagrange equations which are very useful in the geometry of L™.
First, these are used in introducing a canonical connection and then a canonical metrical d—connection.
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These two connections are basic in the geometry of L™. Let us notice the considered notions capture
both the symplectic structure induced by L™ on the manifold TM and the metrical structure on TM.
These give together an almost Kihlerian space K2" determined on TM. It is the geometrical model of
the Lagrange space L". It gives a geometrical legitimacy to the whole study of the Lagrange space L™.
We remark that the variational problem is applied also to the singular (non-regular) Lagrangians. This
idea is very important in my study on the singular Finsler spaces. o

The Finsler spaces with the fundamental function F(z,y) = v/ai;(z)yiy? + b:i(z)y, (z,y) € TM =
TM\{0}, where a;;(z) is a Riemannian metric tensor, were introduced by R.S.Ingarden,[13],[28], and
were remarkable studied by M. Matsumoto and his school[41,42,43]. These were suggested by Randers’
studies [85] on the geometrical model of the gravitational and electromagnetic fields, a reason to call
them ”Randers spaces”. In addition, R.Miron introduced the notion of general Randers spaces in [50],
studied it in detail and applied it in the Relativistic Optics.

On the other hand, Singular Riemannian spaces with the metric tensor field a;;{x) defined on M,
where a;;(z) is singular, that is, the rank(a;;(z)) is less than the dimension n of the base manifold M, were
studied with very interesting results by Gr.Moisil[58] and V.Oproiu|[72]. Further, Singular Finsler spaces

2 772
with the singular fundamental function F(z,y), in which the fundamental tensor field g;;(z, y) = % 6(Z/i§yf
is singular, were introduced by T.Nagano[60,61,62,63,64,65,66].

Some important problems of singular Finsler spaces have been studied by Prof. A. Bejancu in his book[21].

Therefore, it was necessary to study the following problems:

-A clear definition of singular Finsler space.

-Some good examples, which prove the existence of singular Finsler spaces. Singular Randers spaces,
defined by author [62] gives us a natural and remarkable examples.

-Variational problem for singular fundamental function of space SF™.

-Geodesics.

-Singular metrical connections of these spaces.

-The transformations of singular metrical connections.

-The geometrical methods for studying the singular Finsler spaces.

~The extension of the previous theory to the singular Lagrange spaces.

-The generalized singular Finsler spaces.

But what kind of methods we can used in this study? Of course, the method suggested by Lagrangian
study of variational problem is good one. But it is not sufficient for study the metrical connections in
singular Finsler space.

In the case of singular metrical connection we must extend the method of Oproiu from the singular
Riemannian spaces.

Consequently, we solved the previous problems using new ideas and new methods. Almost all results
from the present thesis are original.

Of course the notion of generalized singular Finsler space is new. It is developed here by the methods
suggested from singular Finsler spaces.

We develop the contents as each chapter from thesis: We present in this part of the thesis on abstract
of the main results obtained in the theory of singular Finsler spaces and in the generalized singular Finsler
spaces. Therefore we describe each chapter of thesis.

Chapter 1
Introduction on Finsler, Lagrange and generalized Lagrange spaces.

The theory of singular Finsler spaces or of generalized Finsler spaces is a special case of classical
theory of Finsler, Lagrange or generalized Lagrange spaces. Therefore we recall the known theory of
Finsler, Lagrange and generalized Lagrange spaces - as preliminaries. This theory was created by my
teachers: M. Matumoto, M. Hashiguchi, as well as, in Romania by R. Miron, M. Anastasiei, A. Bejancu,
V. Oproiu and many others.
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In this chapter, we expose the main results from Ph.D.Thesis. Except the first chapter, almost all
thesis contains the original results. Chapter 1 is an abstract of the geometry of Finsler, Lagrange and
generalized Lagrange spaces. So we have

Prop.1.2.1  Any Finsler space F* = (M, F(z,y)) determines a Lagrange space L™ = (M, F?(z,y)).

Prop.1.2.2  Ifthe Lagrange space L™ = (M, L(z,y)) has the fundamental tensor g;;(z, y) 0—homogeneous
with respect to y* and positive definite, then the pair F™ = (M, \/g;;(z,y)y*y’) is a Finsler space.

In section 1.3, on the canonical nonlinear connection and metrical connection, we remenber:
Theorem 1.3.3  There exists a unique N-connection LI'(N) having the following properties:

a. g = 0; b T;k =0; ¢ gyl =0; d. S]’:k =0.

This connection has the local coefficients given by the generalized Christoffel symbols:

% 1 ir 69 T 59/07‘ 591:
L]k = 29 (“l‘ Y L b

2 dxk dxd éz”

i :l o [ 0gir  Ogkr _3gjk
i* =59 dyk By’ ay )

Theorem 1.3.5 If L™ = (M, L) is a Lagrange space, then the differential form

190L | . : ; )
w= §3yid$ s 8 = g;;0y" Ndx’

are globally defined on TM and the exterior differential of w is 2-form 6:

dw = 8.

§1.4. Generalized Lagrange spaces.

Theorem 1.4.1  There exists a unique metrical N-connection LT'(N) = (L; £ C; ) with the prop-

erties Tji,C =0, S]’: « = 0. Its coefficients are given by the generalized Christoffel symbols (from Theorem
1.3.3)

Theorem 1.4.4  The set of transformations of N-connections and the composing of mappings is

an abelian group isomorphic to the additive group of the pairs of d-tensor fields (QZX QYR

Theorem 1.4.7 In order that a generalized Lagrange space GL™ = (M, gij) be reducible to a

dg;

Lagrange space it is necessary that the d-tensor field 3 IZ be totally symmetric.
Y

In the section 4 of chapter 1 we presented an abstract of theory of generalized Lagrange spaces with
regular metric.
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Theorem 1.5.1(R.Miron[54])  If the generalized Lagrange space G L™ is with weakly regular metric,
then the functions (N(z,y)) given by

: oG L1, &€ ¢
2 _—— = gty L
Ny =55 G=g9 (ayfazk V' o )

determine a nonlinear connection on the total space TM which depends on the metric tensor g;;(z,y),
only.

Theorem 1.5.3  If a generalized Lagrange space GL™ is with regular metric, then the tensor field
gi; is O-homogeneous with respect to (y°), namely GL™ is a generalized Finsler space.

Theorem 1.5.4(M. Hashiguchi[32])  If a generalized Finsler space GF™ is with regular positively
defined metric, then

1) The variational problem for the Lagrangian L = £'/2 is regular.
2) Transversality does not coincide to orthogonality.

Theorem 1.5.6 A Finsler space F™ has the properties:

1) F™ determines a generalized Finsler space GL" = (M, gi;(z,y)) with regular metric.
2) The absolute energy is the square of the fundamental function i.e. E(z,y) = F2(z,y).

3) The nonlinear connection (1.42), (1.43) is the Cartan nonlinear connection N.
4) The canonical connection CT( N ) is the Cartan metrical connection.

Chapter 2:
The notion of Singular Finsler Spaces. Variational Problem.

We continue to present, in abstract, new results from chapter 2.

§2.1 Introduction.

The notion of singular Finsler space was not defined till now. It is very clear in the case of singular
Riemannian spaces.

Therefore, in this chapter, we define the concept of singular Finsler space SF™, as a natural extension
of singular Riemannian space. We study the variational problem, the energy and law of conservation of
energy of the space SF™. The theory is applied to study the geodesics of these spaces.

§2.2 Space SF™.
Let M be a C°°-real manifold of dimension n and (TM,x, M) its tangent bundle. The canonical co-
ordinate of a point u € TM, are denoted by (9%, (6,4, k- = 1,2,--- ,n). We write u(zt, y?) or
u = (z,y) € TM, where 7(u) = z.

Definition 2.2.1 A singular Finsler space is a pair SF™ = (M, F(z,y)), in which F is a mapping
from TM to R, F : (z,y) € TM — F(z,y) € R satisfying the following axioms

1) F is a differentiable function on TM = TM \{0} and continuous on the nuli section of the projection &
2) F(z,y) >0on TM

3) F is positively 1-homogeneous with respect to y°
F(z,ty) = tF(z,y), Vt>0
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4) The Hessian of F', with the elements

32F2

1 P
S Y(z,y)eTM
597057 (z,y) €

g:i5(z,y) =

has the rank n — k > 0 and the quadratic form ¢ = g;;(z,y)¢'¢? having in canonical form only positively
term (namely its canonical form is
Y= (@) @)

The function F is called fundamental function of SF™.

We define the distribution V; of nullity of the space SF™ and an apriori fixed complementary
distribution V5 such that the direct sum V = V; & V, holds.
Let v and v the supplementary projectors with respect to the distributions Vi and V,. We denoted
by 11)1 =1, 12)1 = mj the components of v; and v,.
J J

Prop.2.2.2  The fundamental tensor field g;; and the projectors I%, m} satisfy the following equa-
tions :

9i, =0

i _
Gi;My = Gin

Theorem 2.2.1  With respect to the direct decomposition (1.7}, there exist a unique d-tensor field
g"? with the properties

The tensor g% is called the generalized inverse of the fundamental tensor field g;;.

Theorem 2.2.2  The distribution of nullity V; is integrable if and only if we have

l?c:(): (a:k+17"'an; a‘vbzla"'7k)
(1)

Theorem 2.2.3 The distribution V5 is integrable if and only if we have

27:07 (a:1,~~-,k; ﬂ,*y:k—{—l,--»,n).
2)

Here

abs Bay, Ry, Ky By, Big
Qo oe e o

are the invariants of the space SF™. :
We remark that the invariants RS, does not depend on the distribution V».
€3]
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§2.3 Variational problems.

Theorem 2.3.1  In order that the functional I(c) be an extremal value of I(c,) it is necessary that
the curve ¢ be solution of the Euler-Lagrange equations

8F% d §F? . dxt
. 2y .— _ —— = P
E(F7): 8zt dt 9y’ 0. ¥ dt’

Theorem 2.3.2  The following properties hold:
1)  E;(F?) is a d-covector field.
2) Ei(FZ -+ F’z) = EZ(FQ) + Ei(Flz), Ez(an) = aEl-(F?), a € R.

df

d) 0, Vf € F(TM), with 2L — 0.

oyt
Prop.2.3.1 The Hamiltonian energy (2.9) of the space SF™ is Epe = F?

3) E(

Theorem 2.3.3  The energy function F? of the singular Finsler space SF™ = (M, F) is constant
along the every integral curve of the Euler-Lagrange equation E;(F?) = 0.

Theorem 2.3.4  For a singular Finsler space SF™ = (M, F), the Euler-Lagrange equation has the
form

d*rd ded doF
9is g + ik

Varar =
where [jk,4] are the Christoffel symbols of the first type, of 9:5(z,y).

Prop.2.3.2  The projections of the covector field F;(F2) on the distributions V5 and V1 are given,
respectively by

d?z" dz" dz*
E,(FZ) = —Q(gjr'(-i-tz— +m? [TS 2] dt dt ) on V2
dz” dz*®
LE;(F?) = —2(Ii :
B = (l[ T st) on 1

Theorem 2.3.5  The Euler-Lagrange equation E;(F?) = 0 holds if and only if

dx" dz°®
(dt2 e dt dt) 0
; Ldz” dz?®
lj[r87Z]—dz— ot -—0,

where we denote

{i'e} = ¢"lik,s].
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§2.4 Geodesics.

Theorem 2.4.1  The equation of geodesics in the natural parameterization are given by equation
(3.5).

Theorem 2.4.2  The equations (3.1) of the geodesics of singular Finsler space SF™ = (M, F(z,y))
are equivalent to the following system of differential equations

&’z ; Jdz" dz™
oz + Uy ) =0
Ldzx” dz™

l]-[rm,z] o ds =0

Theorem 2.4.3  The geodesic covector field of a geodesic curve of singular Finsler space SF™
belongs to the distribution V5.

An example:

The pair SF™ = (M, \/a;;(x)y*y’) is a singular Finsler space, where a;;(z) is a singular Riemannian
metric.

Theorem 2.5.2 A singular Finsler space SF™ = (M, F(z,y)) is reducible to a singular Riemannian
space if and only if the d-tensor field

1 H*F?
Cijk = AR ATE
4 Jytdyidy

vanishes.

Theorem 2.5.3  If the manifold M is endowed with a singular Riemannian metric, then locally
on M there exist singular Finsler spaces SF™ = (M, F(z,y)).

- Chapter 3
Singular Randers Spaces.

In Chapter 3 we study a first important class of spaces SF". Namely, we give :

Definition 3.2.2 A singular Randers space is a singular Finsler space with the fundamental func-

tion F(z,y) from:
F(z,y) = \/ai; (2)y'y? +bi(2)y’,

defined in every point u € 7~(U) and where a;;{z) is a singular Riemannian metric.

Theorem 3.1.1  With respect to the direct decomposition (3.6), there exist a unique d—tensor
field a¥(z) with the properties

ain(z)ahi (z) = ml (x)

a(z)ni(z) =0
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Theorem 3.2.1 1) If a;; — b;b; is positive semi-definite, then the fundamental function F (z,y)
defined by (3.15) is semi-positive valued (F > 0) on the domain D and differentiable on D, where

D:{(z,y)emfaZO} and 5:{(z,y)€f\]\2f]a>0}CD.

2) The metric tensor g;;(z,y) of the singular Randers space SF” is given by (3.20).
3) gi;(z,y) has the same rank with the singular Riemannian metric a;;(z), namely

rank(gi;(z,)) = rank(a; (z)).

We construct two examples of Randers spaces. The first one is as follows:
Example 1. Let E? be the Euclidean plan with an orthonormal coordinate system (z,y). At an

arbitrary point P(z,y) of E? = E? - {0} we define the indicatrix curve Ip(Figure 1) such that Ip is
parallel lines with the line and the distance to the line Oy is /1 + e(z, y)|z|, where e(z,y) is a positive-
valued function. Then Ip is given by the equation

= (1+e(z,y))z?

in the coordinates (u,v). Since the tangent space of E? at P can be identified with E? itself, we may put
u=z+ 2z, v=y+y. Then (3.32) is written as

e(z,y)x® — 2zt — &% = 0.
Now we apply the usual method to (3.33). Replacing (&,%) by (F, F) we get
e(z,y)z?F? - 225 F ~ &% = 0.

'This algebraic equation for F' has two solutions, one is positive and the other negative. We choose the
positive solution

xy)<\/mI I+ )

'Thus we obtain a two-dimensional Singular Randers space (EV?, F), where the singular Randers metric
F' is given by (3.35).

As the particular cases we have

e=a®+y*® p>1,  V(z,y) € B2

and we obtain interesting examples of Randers spaces.

§3.3 Variational problem.

Theorem 3.3.1  The necessary conditions for the nonisotropic curve ¢ : s — ((s)) to be an
extremal value of (3.26)is that the functions z(s) be a solution of the following differential equations

d2zr dx” dz* dz”
d52 [ k 7’] =F )

Gir g2 ds ds " ds

where s satisfies (3.24), that is , ds = a(z,dz) and [rk,i] = (gal,: + gaik -~ %ar.k)
i " z*

Theorem 3.3.2 1) The equations (3.29) of the geodesics of singular Randers spaces SF™ =
(M, + (3) are equivalent to the system of differential equations (3. 31)
2) The geodesics of the space SF™ belongs in the distribution of nullity V7 if the second condition of
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Qu,v}

PGy) x

0 x

Y 1+e x|

Figure 1: Example 1

(3.31) is identically satisfied.

Chapter 4
Variational Problems in the Singular Lagrange Spaces.

In Chapter 4 we study the notion of singular Lagrange space following the same methods as in the
case of spaces SF™.

The section 2 from this chapter is devoted to the variational problem and Euler-Lagrange equations.

Theorem 4.2.1  In order that the functional I (¢) be an extremal value of I(c.) it is necessary
that ¢ be the solution of the Euler-Lagrange equations

def aﬁ—i oL _ Z—E
ozt oyi) 7 Todt

Ei(L) =

Theorem 4.2.2  The following properties hold:
1) E;(L) is a d-covector ﬁeld
2)E(L’+£) E;(L)+ Ei(L (Saﬁ)-aE([Z)aeR
3)E ( L) =0,Yf € F(TM), w1th o=

Theorem 4.2.3  The energy E. of the singular Lagrangian L is conserved along to every integral
curve ¢ of the Euler-Lagrange equation F; =0, y* = dr

Theorem 4.2.4  For a singular Lagrange space SL™, the Euler-Lagrange equation has the form

2‘d2zr+ 8L ,_a,c_o ;  dzt
ir 2 axrayiy a0 Y T

Prop.4.2.1  The projection of the covector field E;(L) on the distributions V> and V; are given,
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respectively by

mE(E) (gFW—{- m (afrgy yr_gfr)) on Vs
BE(L) = - (524 -g—ﬂ) on Vi

Theorem 4.2.5  The Euler - Lagrange equation E;(L) = 0 holds if and only if

0ir (G5 +267(@,y)) =0

i r ac —
l (Brray - W) =0

where
Gz )_1 L 8L . 8L ,_ dz”
=g Bxsayiy ari )Y T @
Definition 4.1.3 A singular Lagrange space whose fundamental function is given by

L =F?(z,y) + A(2)y’ + U(),
where F is a fundamental function of a singular Finsler space (M, F(z,y)), will be called a Caratheodory
singular Finslerian Lagrange space, shortly SAFL— space.
Theorem 4.2.6  For a Caratheodory SAFL - space, the Euler- Lagrange equation has the form
d*z7 s, ] de” dz® (2 T
dt? hdt odt Y dt
where [rs, ] are the Christoffel symbols of the first type and

Gir

is electromagnetic tensor field.

Prop.4.2.2  The projection of the covector field E;(£) on the distributions V, and V; are given,
respectively, by

{ mBL) = ~2 (g0 G+ mirs, 474 — miFL &) o Vi

BE(L) = =2 (lifrs,]]| %4 —1iF, %) on W,

Theorem 4.2.7  The Euler - Lagrange equation E;(£) = 0 holds if and only if

{M(W+ﬁsﬁ@ f) =0

5 (Irs, i1 6 — P tgr) =0

where {,*,} = g"[rs,i] and g* F;, & F}.
Theorem 4.2.8  The Euler - Lagrange equation E;(£) = 0 of a SAFL — space holds if and only if

{ 'ij(x)( r s}d2 dx hdt ) =0

1 (e, 1955~ Fi ) =0
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where {,7,} = ¢’![rs, .

Chapter 5
On the Connections of Singular Finsler spaces.

The Chapter 5 is devoted to the N-linear connections which are singular with respect to g;;(z,y) and
metrical singular with respect to g;;(z,y)

In the whole chapter 5 we systematically used the Oproiu’s method and Obata-Oproiu operators.

For singular Finsler connections, we have some new important results. A singular Finsler connection
is an N-linear connection DT'(V) with the properties g« g™ =0 and gi,[kgrj = 0. So we have:

Prop.5.2.1  The equations (5.41) and (5.42) are equivalent to respectively, the equations:
st v 1 i si 1 i gr o si
(¥+0)5. D¢, = §gjs|k9 +§9rslkljg ;

T 1 1 1 T, 5t
(¥ +0)5:Bis = 595169” + 59,54597

The operators S} =¥ -0, f22 = ¥ + O are the Obata-Oproiu’s operators.
Prop.5.2.2  If we put
Di; = ';‘gjs'kgsi + %grs[kl;QSiv
Bij= 500" + %grsikl§9$i7
then the general solutions of (5.44) and (5.45) are
Djx = Die + (2 - O)Prijy
Bhy = Bl + (2 - 0)1:Q%;,
where Pf;, Q% ; are arbitrary d-tensor fields.

Theorem 5.2.1  Let FT' = (N}, F;, Ci;) be a fixed Finsler connection. Then the set of all singular
Finsler connections FT' = (N7, Fi,C}y) is given by

1) N} = Ni + A,

2) Fiy = Fiy — (Clx + Dix) A} + Eix,

3). Cly = Cix + Diy,

where

Dl = %gksihgd + %grsihlZQSI +(® - O P;,

B = %9ks]h951 + %grsihl;;gd +(@- @)fi@ij

and A%, P}x, Q% are arbitrary d-tensor fields and foi, @{fi are the quantities of (5.40).

Theorem 5.2.2  Let FI' = (N, F};, Ci;) be a fixed Finsler connection. Then the following Finsler

— 157 —



Journal of the Faculty of Global Communication Siebold University of Nagasaki No.3

connection (N}, Fix,Cly)

MR
NI = N,
i i 1 51 1 TSt
F]'k = F}k + é‘gksi]‘g + igrsijlkg ;
. .. 1 i i 1 T gr si
Cih = Ch+ Egks]jgs + igrsljlkgs

is a singular Finsler connection.
This result proves the existence of singular Finsler connections.

Theorem 5.2.3  The set of all singular Finsler connections (NJ’, F]’k, C]’: &) is given by
N; = N ]’ + 43,
~ CLiA} + (2 — ©)21(Q5n — PThAL),

Fjy,
Ci ck+(¢> ©) Pl s

where FT" = (NJ’,F]2

Ci4) is a fixed singular Finsler connection and A%, Piy Q' are arbitrary d-tensor
fields.

ik 1777
Theorem 5.2.5  The set of all singular Finsler connections FT'(V) is given by
N]’ = N?

Flk + ((I) @) tha

Fis
C]zk k + (q> e)kr jk

where FI'(N) is a fixed singular Finsler connection and P;k, Q} & are arbitrary d-tensor fields.

Theorem 5.2.6  The set of transformations of singular Finsler connections and the composition
of mappings is an abelian group, isomorphic to the additive group of pairs of tensors:

{((I) @) thv(q) e)kr ih }

§5.3 is devoted to:
The metrical property of singular Finsler connections. A metrical singular Finsler connection is defined

by the equations g, = 0 and g;; ]k = 0. So, any metrical singular Finsler connection is a singular Finsler
connection.

Theorem 5.3.1  The set of all metrical singular Finsler connections is given by FT' = (N, i F ]Zk , jk),
where

N; = Ni+A
Fjx = Flx—CiAl + (2~ )1 (Q5s — Py rAl),
c?k = Ck+(<1> G))kr]

where FI' = (N ¢ F”k,C’2 ) is a fixed Finsler connection and A;,P]’k, Qj- % are arbitrary d-tensor fields.

Theorem 5.3.2  Let FI' = (N}, Fi;, Ciy) and A%, P!y, be a fixed metrical singular Finsler connec-
tion and arbitrary d-tensor fields. Then the following Fmsler connection (N7, F’L, Cik) -

N = N;+A4;
e o= ?_CikAr.

C]zk Ctk + (Q G)kr jh
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is a metrical singular Finsler one.

Theorem 5.3.3  The set of all metrical singular Finsler connections FT'(N) is given by

N}:N?

Fiy = Fi+(@-0)HQ5m,
Cjk = Cjk—}-( —@)’Z; ]'h

where F' f’(N ) is a fixed metrical singular Finsler connection and PJ?' ks Qj- & are arbitrary d-tensor fields.

§5.4 The torsion tensor field of the metrical singular Finsler connections.
We look for d-tensor of torsion of the metrical singular Finsler connections which do not depend on the
distribution V5. Theorem 5.4.1 solved this problem.

Prop. 5.4.1  For the d-tensor fields Qi %y Pl in the formulas (5.72) and (5.73), the following
equations

1, 1 U
§(mlmk glkg”)Qrzm = 'iml g"?!" squ - Egir]qmsm{gq]a

1 1 R j
§(mlmk 9ieg" )P ;Mg imlrgiqlrmsgqj_igirlqmsmlrgq]

are satisfied, respectively.

Theorem 5.4.1  Let FI' = (N}, Fi,Cit) be a fixed Finsler connection satisfying Ti = 0 and

S]‘ & = 0, and let the metrical singular Finsler connection FT = (N i, F}y,, Ciy) be given by
Fip= F;k + Elg,
C]Zk = C;k + D;k

The torsion tensor fields T, Si,of F T(N) have the properties miTy; m¥Em] = 0 and miSy; m"m{ = 0,
respectively if and only if d- tensor fields Ej;, D} ; satisfy the property (5.81) and (5.82) with Q%, P}y
satisfying (5.79) and (5.80), respectively.

Prop.5.4.2  The torsion tensor fields T7,, S}, are written in the form:

3 1 T st st
;k = Lkrsm g 2Ljrsmkg + Lkrsljg +
™ T 7S 7 1 I T 78
+(® - @)kt(2 g+ mt. ali) — (@ — 9)2:(51£Tk1 + miTHIR)
and

1 1 ] .
= 'iWkrsmrgn — o Winemig®™ + Wirnslig® +

2
3 1 TS
+(® - @)ﬁ(il: Tt miWols) — (@ - O)Jt(2 Wi+ miW ).

Theorem 5.4.2  The torsion tensor fields le, St %1, of the metrical singular Finsler connection FT =
(N : FJ 4, C},,) determined by (5.98) and (5.99) vanish 1f and only if L;jx = 0, W = 0 are satisfied.

Chapter 6
Generalized Singular Finsler Spaces.
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In the last chapter we investigated a new notion of the singular Finsler metric. This metric is a
generalized Finsler metric. It is defined in the first section of the chapter 6. So, one introduced the
notion of generalized singular Finsler spaces. It is a pair GSF™ = (M, g;;(z,y)) where g;; is a d-tensor
field homogeneous of degree 0 symmetric and of rank(g;;) =n —k.

The geometry of GSF™-spaces can be developed by the same method as the geometry of singular
Finsler spaces SF™.

But the geometry of GSF™-spaces can not be reduced to the geometry to the singular Finsler spaces
or singular Lagrange spaces because the fundamental tensor 9i; of the space GSF™, in general, is not
a fundamental tensor of the space SF™ or SL™. In this case we must study new notions by means the
absolute energy of space. We proved that the absolute energy of space GSF™ is coincident with the
energy of space (Proposition 6.3.1) and Euler-Lagrange equation are given in the Theorem 6.3.1. Also
we study the distribution of nullity of tensor g; ; and determined the inverse generalized g/ of 9ij-

We established the invariants Rp, which does not depend on the distribution V,. We study a co-
variant derivation operator which preserve by the parallelism of the distribution N , V1, Va. So we study
the coefficients of N-linear connection in adopted frames (6.43). In order to establish the geometrical
object fields of the space GSF™ which do not depend on the distribution V; we investigate the N-linear
connections D which preserve by parallelism the distributions N , V1, Va. The corresponding h—, v, —, vg—
covariant derivatives are pointed out. The torsion of curvature of D is studied, too. In finally section,
we determined the existence an arbitrary of the set of all metrical singular connections of the generalized
singular Finsler spaces.

With these problems we end the text of Ph.D thesis.
References are given only by papers which have some connections with the problems from this Ph.D
thesis.
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