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Abstract

. The dragging effect on the inertial frame is investigated in the Friedmann
universe. The dragging coefficient wo/ws decreases as the universe expands.
The inertial frame is not dominated completely by matter of the universe.
The Friedmann universe is not Machian.

I. Introduction

It is well known that Thirring effect® ?'® by a rotating shell
appears in general relativity, and that the factor GM/Rc? of the
shell plays an important role. In fact the force induced in the
vicinity of the orgin of the rotating shell behaves like the Coriolis
force when the factor GM/R¢? is equal to 3/4.

The motivation of a series of investigations by the author orig-
inates in a simple question: What happens if that rotating shell
expands ? As the shell expands, the factor GM/Rc?® decreases; even
in this situation, does the Coriolis force remain ? In other words,

is the inertial frame at the shell center dominated by the rotating
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shell itself ? This is the most immediate test to check the validity
of Mach’s principle in a native sence, which means that the inertial
frame is determined completely by matter of the universe.

However, a shell in empty space is a shell to the last, and not
the universe. We consider first the homogeneous and isotropic dis-
tribution of matter and discuss the inertial frame dragging induced
by a spherical rotating shell which has the same density as matter
of the universe in a similar method applied by Lausberg® to the
static Einstein universe.

It is natural that we have examined the dragging effect in the
closed expanding Friedmann universe. We, however, have found
some difficulties, which concludes that the Friedmann universe is
not Machian, and which suggests that the gravitational constant
should be time-varying in the Machian point of view.

In line with this suggestion we have surveyed a new cosmolo-
gical solution®'® in the Brans-Dicke theory of gravitation™ in suc-
ces. In this closed cosmological model the factor G(t)M/c*a(t)
keeps constant owing to the variable gravitational “constant” not-
withstanding the universe expands, and moreover the value of that
factor is inevitably fixed to =~ by the theory. The dragging coeffi-
cient between the angular velocity of the inertial frame at the
origin of the universe and that of the rotating shell reaches unity
when the shell covers the whole universe®, and hence this cosmo-
logical model is Machian in the above-mentioned meaning.

We, in this paper, discuss the inertial frame dragging in the
Friedmann universe in the framework of general relativity. Discus-
sions are developed in-parallel with the previous investigation® in

the closed cosmological model of the Brans-Dicke theory to make
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clear correspondence and differences between them.

TI. The Dragging Effect on the Inertial Frame

We take three angular coordinates x*=x, x*=#0, x> =@ as spatial
coordinates and the variable t as the cosmological time, and then
the closed Friedmann universe is described by the following metric

tensor:
(1) ds?=—dft+a?() ldx?+sin2x(d02+sin?8 dp?)].
The expansion parameter a{t) obeys the Friedmann equation:

eMe? | 1 5g2-1,

2
(2) 4 bzia 3

where # and A are the Einstein gravitational constant and the cos-
mological constant respectively, and M is a integral constant, which

means the mass of the whole universe
(3) M=2=%ap.

Let us consider in this universe a shell, the volume of which
is restricted by the two hypersurfaces x=x, and x=x;, with 0<
%o <% <x. The density of the shell is assumed to be the same as
the remaining part of the universe. This shell is now considered to
be slowly rotating as a rigid bedy around the axis #=0, with an
angular veocity e. relative to the remaining part of the universe.

The metric form in the whole universe will be perturbed by

rotation of the shell as
(4) ds?=—dit+a?(){dxc+sin2y[d6*--sin20 (dp—wdt/c)2]}.
Owing to the slow rate of rotation we may limit the calculations up
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to the first order of an angular velocity o, that is, to the Coriolis
force.

Now we start the following perturbed metric tensor:

(5) dsP=—dt?+a2(¢) [dy?-sin?x (d6? +sin2d de?)]
~— 20 (x,0,8) a2 (£) sinZx sin?@ dedt/c.

Our problem is to find solutions of unknown functions a(t) and

»(x, 8,1), which obey the Finstein field equations of gravitation:
(6) va—%Rgpv'—hgpr:fCTpv,

where Tuv is the energy-momentun tensor, which has the following

form for the perfect fluid:

(1) Tuw=—pgu—(p+p/cDtstis.

In the present problem, as the pressure p is negligible, the non-

vanishing components of energy-momentum tensor are

Top=—pc?
& { o
Ta(): T03= —pc (m—m,) a? 51n2x sin%d
{ws==0 outside the shell).
In the long run (see Appendix A) the independent field equa-

tions of gravitation are

(9a) 2a&+d:—na?+1=0,
(9b) ~—3(a@+1)/a+r=—xpc2,
(9c) Bxo-+-3(d/a)8xe=0
(9d) dee+-3(d/a)dse=0
(9e) 2wsin®¢(2ad—na?+3) +sin®x(8%s e 4coty 6xw—-4w)
+ (8%e 00+ 3cotd dow) =2xpc?(w—w ) a? siny
(w:,=0 outside the shell).
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Equations (9a) and (9b) are the same as the unperturbed, and
determine completely the time dependence of a(t) and p(f), that is,
Eqs. (2) and (3). By integrating Eqgs. (9¢) and (9d) we have

10) ox.00)=WH0)/a*)+T@,

where an arbitrary function W depends only on x and 6, and a
function T on t By substituting Eq. (10) into Eq. (9e) we find
that T(t) must be zero substantially in the homogeneous equation
of Eq. (%e). By substituting Egs. (2), (3), and (9a) into Eq. (9e)

we have

(12) 2o sinzx(—- 2;?;[;2 ——%MZZ +3)

+8In2¥ (0% zeo 1 ACOLY, Oxer— de) + (620 000 -+ 3CO10 Do)

&Mc2

‘w5 Sin?
w?aq f X

(ws=0 outside the hell),

which determines the inertial property of the universe. We find

easily that a particular solution of this inhomogeneous equation is

(13) ﬁ)p-—-—’ch ( 2KMC

-1
fodduhalli ity W, v .
5%a + AG l) Ws.

3n?a 3

The homogeneous equation of Eq. (12) admits a variable separation

with respect to x and &; let us write

A Wko)=X(x-8().

Denoting by S the separation constant, two equations arise from the

homogeneous equation of Eq. (12):

1 (d® 48\ _
(18) & (gt 3001 ) =5,
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2eMc® 1. o
3n%a vg-xa +3)

sin?x (42X dX _
oy (dxz +4cotx7— 4X) S.

(16) osinty(—

Equation (15) has a regular solution for 8=0 and = only when S=
(n+2) (n—-1), where n is an integer, and which is the first deriv-
ative of the Legendre polynomials Pr(cesd). As the particular solu-
tion (13) does not involve the variable 6, function ©(@) must be
constant in order that the solution (x,8,) can connect smoothly
at ¥x=x, and x=x, - Therefore n=1 and S=.

Equation (10) with T({)—(0 means that the wvariable x and t
must separate in Eq. (16) (§=0), therefore next conditions must

be satisfied for consistency:

2eMc? | 1500 ) =D=const.,

an 2(3 1

(18) }1( (‘j: fo +dcoty ‘fiX 4X)

Due to the condition (17), the particular solution (13) is rewritten

to

xMc?

(19) w»= ;’f(Dj_Ij@af(ﬁ ws

If we use a variable z defined by 2z=cos x+1, equation (18)

reduces to the hypergeometric differential equation:

The independent solution in the vicinity of z=0 are the hypergeo-

metric functions
21y FlaBmz), 2 'Fla—v+1.8—7+12-v2), |z]<l,
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and in the vicinity of z=1
(22) FlaBa+B—v+11-2),
(1-z)rePfF{a—By—ar—a—B+11—2), |1—2]<1,
where

(23) a+B8=4, af=D+4, 7=%

The function » must be regular at x=0 and x=». Thus, the

complete solution w(x, #,1) is

A

o () =3 G Xa(x), (O<x<x0);
xMc?
(20) w0 (%,0) = a_al(ff [B1Xs1 (%) + B2 X 55(%)] +WD'|C'5&— s,
(o<
0c (U =gaczs Ke 00, U<,
where

X)) =F(a.Ba+B8—v+1,(1—cosx)/2),
@5 Xo1(x)=Xe()=F(a,8,v(1+cosx)/2),

1-
Xoa(X) = (ﬁg@_&x) "Fa—y+1,8—v+1, 2—7 (1+cosx)/2),
and A, B, B, and C are arbitrary constants.

These constants are determined by means of the conditions that

wa, wb, and o must connect smoothly at ¥x=x, and x=x,, that is,

ﬂ'a(Xn,t) =wp (xO:t) »
ws (Xut) =we (X1,E),
Gxwa (Xo,t) =0xews (Xo,2),

(26)

Oxws (')C1,t) =gxw, (Xht) .

89



Is the Friedmann Universe Machian?

As the rotating shell obeys the ordinary conservation law of angular
momentum, the angular volocity ws varies in proportion to the in-
verse square of a(t). Therefore the particular solution w, varies
in proportion to tlie inverse cube of a(t), and there arise no con-
tradictions in Eqgs. (26) for all ¢

Now we are interested in the metric tensor in the vicinity of
the origin of the universe, so it is encugh to determine only the
value of A in Eqs. {24). By solving simultaneously Egs. (26) we

have

@7 A=Qxx1) /Plxux1) (see Appendix B1),

and hence the solution inside the shell is
) Qkexy . 1
8 L] t] )t _ T AT
(28) «© (XO XX ) PCXO:XI) da(t)
XF(a, B a+B—v+1; (1—cosy)/2).

At the origin

© ) =lim o, = SXeX) 1
(29) U(xﬂ,xl:t) hm P(Xo:%l) as(t.)

This function represents the the angular velocity of the inertial
frame at the origin of the Friedmann universe, induced by the
spherical rotating shell restricted by two hypersurfaces x=x, and
¥ =%; with the angular velocity os.

The induced angular velocity in case that the rotating shell

covers the whole universe coverges to

{(30) wu(t)—llm Hm wo(Xo,x1t) =wp (see Appendix B2).

x°-> T

Therefore the dragging coeffcient of the inertial frame in the

Friedmann universe is given as
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wg _ 8 . GM
(31 cT:_ x(D+4) cta(t)”

M. Discussions and Concluding Remarks

Equation (31) means that the dragging coefficient of the iner-
tial frame decreases as the universe expands. This result coinsides
with the intuitive prediction from Thirring’s result, and reconfirms
importance of the factor GM/Rc? in the inertial frame dragging.
The inertial frame is not completely connected with matter of the
universe, therefore the Coriolis force does not appear completely by
the rotation relative te the whole universe. The Friedmann uni-
verse is not Machian in this sence. We cannot help thinking that
the inertial force does not have the material origin in general rel-
ativity, and is introduced « priori to the theory.

There exists a difficulty in the present discussion. We cannot
understand the physical meaning of the condition (17}, bseides we
cannot determine a value of D in the framework of the theory. We
cannot give a fixed value of the dragging coefficient in the Fried-
mann universe.

If we put the relation w¢/ws=1 from the Machian point of view,
we cbtain two relations G/a=const. and ra?=const., which lead us
to the static Einstein universe. If we assume the relation wy/ws=1.
and moreover request the expanding universe, we cannot help ex-
tending the theory. We need the variable gravitational “constant”
and the variable cosmological “constant”. The time dependence of
those “constants” is clear, that is, G(t)eca(t) and A{t)eca™?(t).

The Machian cosmological model satisfying those conditions ex-
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ists in the Brans-Dicke theory of gravitation. The gravitational
field, in this theory, is described by the metric tensor and the
scalar field in the Riemannian manifold which represents the recip-
rocal of the gravitational “constant”. The universe expands forever
linearly a(t)eoct, and the scalar field satisfies the relation a(t)¢(t)
=const. for all cosmological times. The cosmological “constant” is
regarded as A(E)=—(3/2)(p/P)?ca~?(t) in this modei®. The cor-
respondent term to Eq. (17) becomes constant automatically and its
value is given as the result of the theory. Thus, the relation wy/ws
=1 is always statisfied. Now we can understand how difficulties
in the Friedmann universe have solved in this closed cosmological
model of the Brans-Dicke theory.

In the present discussion, the (3, 0) component of the field
equations, especially the particular solution of this inhomogeneous
equation, determines the inertial property of the universe (wp—wy).
The particular solution is wp=w. in that mode! of the Brans-Dicke
theory, and wpecwg-a™'(f) in the Friedmann universe. This is why
the dragging coefficient of the inertial frame wo/w, decreases as
a~'(t) in the Friedmann universe.

For the present, the expanding Friedmann universe is the most
standard cosmological model in general relativity. Therefore, even
if the Friedmann universe becomes non-Machian in this investiga-
tion, much more study should be tried to confirm this result.

Since Newton, all (local) theories of physics have been described
in reference to the absclute space or the global inertial frame,
which is never influenced by the environment (the universe). It
is sure that Einstein reduced the global inertial frame to the local

in general relativity, in which the gravitational field, that is, the
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Riemannian space-time is subject to the distribution of matter.
However, is the local inertial frame really determined completely
by the distribution of matter in the universe.? The inertial force
appeared in the coordinate transformation of references is nothing
but the fictitious. Is it to matter of the universe or to the abso-
lute space that the inertial force appears in the acceleration ? It
seems that a ghost of the absolute space remains even in general
relativity.
Again we ask what the inertial frame is. Our aim is to give

inertia the material origin.

Appendix Al.

nonvanishing covariant components of the metric tensor
g11=a*®)
&22=a2%{t)sin®y
£33=a(t)siny sin%@
goo=—1
gio=g01=— (1/¢)a2(¢)sin sin?d w (x,0,1)

nonvanishing contravariant components of the metric {ensor
gli=1/a?
g2*=1/a*sin%y
g33=1/a?sin%y sin%@
gO 0 1

gSU:gOﬂ:__m/C
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Appendix A2,

nonvanishing Christoffel symbols

ri
I’} ;== —siny cosy
T}, = —siny cosy sin%d

I} =T}3= (a/c)siny cosx sin®6+ (1/2¢)siny sin’ dxew

r

I'%,=—sind cosd

', =I'%,= (o/c)sind cos®- (1/2¢)sin0 dsw
I'{i=(e/c)ad

I'$;=I'§; =cotx

['3,=0I3,=— (w/c)coty— (1/2¢) xe

I'd,=(w/c)ad sin®y
['3;=T§,=cotd
[y =T§,=— (w/c)cotd— (1/26)8sw
I'd; = (w/c)ad sin?y sin?d
'8, =I'§s=d/a

[Ey=—(Cw/e)-(d/a)—a/c

TY,=ad

T{,=0I%,=(1/2¢c)a? sin%y sin? Bxw

I}, =T3;=(1/2¢)a?sin%x sin?f dew
'Y, =ad sin%y sin?d

T§,=T3,=— (w/c)ad sinZy sin2d
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Appendix A3.

nonvanishing components of the Ricci tensor
Rij=—2~2d2—ad
RKpo=(—2—-2d2—ad)sin®y
Rys=(—2—2d*—ad)siny sin®
Roo=3d/a
Rig=R31=—(1/2c) &* siny sin®@ [8x&-+3(d/a) dxe]
Ros=Ri2=—(1/2¢)a®sin?x sin?0 [8ee--3{(d/a)8re]
Rao=Ry3=(w/c)sin?y sin2d{ad -+ 3d?)
—{1/2¢)siny sin®0(0%: 0+ 4coty Oxw 4w}
—(1/2¢)sin?8 (3% s 60 + 3cotd Bew)

the scalar curvature

=—{(6/a%) (1+aé*+ad)
Appendix Ad.

nonvanishing components of the Einstein tensor
Gii=1—xa24-d%+2ad
G22=Gq, sin?y
Gs3=G11 sin®y sin?f
Goo=—(3/a%) (1+4% +x
G13=G31=—(1/2¢)a® sin?x sin? [8xir+3(d/a)8xw]
Gy =Gy=—{(1/2c)a" sinZy sin?d [8ew+ 3(d/a)0se]
Gao=0Go3 =~ (w/c)sin®y sin%0 (3—rat+2ad)
— (1/2¢)sin?y sin2d (8%« xo -+ 4coty Fxe— o)
—(1/2¢)sin20(6%: 0+ 3cotd dsw)
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Appendix Bl.

Xa(xo) Xs,(x0) Xp.(x0) 0 |
0 Xo, (1) Xo, () Xe (o)
X2 (%) X5, (x0) X3,(%0) 0

0 X (e XeQen |,

Py =

£ X5, (x0) Xo,(x0) 0

O X, () X, 0) Xe(a)

0 X}, G X5, (o) 0

0 X},00) X5.() Xe(x) |,

Q (xox1) =

where

2
Q—-_ﬂ.azml.

O EYS)
Appendix B2.
asymptotic behavior of the hypergeometric function
Xa (O) =1

Xa0) =0, X500 = Wﬂﬁmw simx (x~0)

s =00, 0,00 = (1)

re—mra+p—m -
Fa—v+DF@E—v+ X0

Ko@) =+o0, X, (0 = (FE)™T ()

?}:(0)=—'°°:

—a—f . - —a-g-1
X5, 00=2 ;‘ ﬁsmx(l Zosx)'f *

T~ (e+B—v)
Fla—y+DI@E—-v+1)

(x~0)
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ba(m) =+ o0, X3, = V5L sim (LERO)T ooy

Xe ()=t o0, X () = (17 )T ATOOT@E Ay

O~

2 T{a)I'(8)
Xc (71:) :1
X () =—ce,
Y _v—a—g _. 1—cosy {7 e f 1T (VT (a+B8—7)
X.00)= 3 siny ( 5 ) s
Xe(m) =0, XL ()= )s1nx ()

I'(2) is the gamma function.
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