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Abstract

The asymptotic behavior of the Brans-Dicke scalar field ¢ for the
large coupling parameter @ and its physical meaning are discussed for
the contracted energy-momentum 7 =0 and 7'+ 0. The special charac-
ter of the Brans-Dicke theory, in the Machian point of view, is also
discussed in contexts of local and cosmological problems in comparison
with general relativity. For cosmological problem, as a reflection of the
Machian point of view, we propose a postulate that the scalar field of a
proper cosmological solution should have the asymptotic form ¢=O(p/w)
and should converge to zero in the continuous limit o/ w—0. It is rather
reasonable and essential that the BD does not reduce to GR for large w.
For local problems, as a reflection of the presence of cosmological matter
in the universe, we require another postulate that the scalar field by
locally-distributed matter should show the asymptotic behavior ¢= <>+
O(1/w). Then, we can discuss local problems with an asymptotically-
flat (r —oo) boundary condition for the metric g. and <¢> =G~! for the
scalar field, without considering the cosmological background environ-

ment. For local problems, BD reduces properly to GR for large w.
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I Introduction

It seems that Einstein’s general relativity has increasingly obtained
its exactness and validity by many experimental and observational
tests. Nevertheless, on the other hand, much efforts for scalar-tensor
theories of gravination also continue for a long time. We have some
historical or fundamental bases on which we believe that there should
exist some kinds of scalar field as the gravitational field.

The Brans-Dicke theory [1] is the prototype of such scalar-tensor
theories of gravitation, and the gravitational field is described by the
metric tensor gw of the Riemannian manifold and the non-minimally
coupled scalar field ¢ on that manifold, which represents the
spacetime- varying gravitational “constant”. The field equations of the
Brans-Dicke theory are obtained by the similar variational method as

the Einstein theory, and given as following in our sign conventions:

Ry —%ng :‘68,4% Tuw *%< Dy —%g#ufﬁ,/l‘ﬁ'l)

— b= 90 8), (1)
o 8

where 7., is the energy-momentum tensor of matter and @ is the
coupling parameter of the scalar field.

As mentioned in many literatures (see, for example, [2]), when the
coupling parameter w is large enough, the scalar field and the field
equation of gravitarion have the following approximate form:

=<+ 0(1/w), (3)
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R#u*%Rguu:%;%Tuu%‘ 0(1/0)), (4)

and in the limit of infinity (w—o0), the scalar field ¢ converges to
constant <#, thus the field equations of gravitation coincide complete-
ly with those of general relativity by replacing ¢ with Newton’s
gravitational constant G=<¢>"".

Recently, however, some authors [3], [4], reported that these
discussions are generally not right when the contracted energy-momen-
tum tensor T = T.* vanishes. According to Banerjee and Sen [3], in
this situation 7°= 0, asymptotic behavior of the scalar field becomes

p=<{p>+0(1/Vw) (5)
when the coupling parameter is large enough. In the limit of infinity,
though the scalar field definitely converges to constant, the second term
of the right-hand side of Eq. (1) remains nonvanishing and the field
equations of the Brans-Dicke theory do not coincide with those of the
Einstein theory with the same energy-momentum tensor 7. As for
such examples of exact solutions, see Refs of [3], [4]. They say that
the condition T+ 0 is both neccessary and sufficient for the Brans-
Dicke solutions to yield the corresponding solutions of general relatibity
with the same Tw tn the infinite w limit.

However, this theorem is not true as indicated by Faraoni [4] with
a counterexample [5]. Faraoni gave a rigorous mathematical proof to
the asymptotic behavior Eq. (5) by discussing the conformal invariance
of the Brans-Dicke theory when 7°= (. He insists only that the Brans-
Dicke solutions with T =0 generically fail lo the corresponding solu-
tions of genmeral velativity when w—0.

In this paper, we survey literatures and discuss generally the

physical meaning of the relationship between the Brans-Dicke theory
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and the Einstein theory in the cases 7= 0 and 7+ 0 in contexts of
local or cosmological problems, and then make clear the essence of the
Brans-Dicke theory. We indicate another cosmological counterexam-
ple to the above theorem [3] in section IV. However its physical
meaning is completely different from those of the above authors, who
belong to the second standpoint in section V. We insist that the
cosmological solutions in the Brans-Dicke theory which do not reduce
to the corresponding solutions in general relativity when w—cc are
rather reasonable and essential. Going back to the original motivation
of the Barns- Dicke theory, the Machian point of view, we realize that
a particle in otherwise empty space should not have the inertial prop-
erties. We will propose two postulates for local and cosmological

problems respectively.

I Physical Meaning of the Asymptotic Behavior

Let us discuss the asymptotic behavior of the scalar field when 7= 0.
An order of magnitude estimate by Banerjee and Sen [3] is more
appropriate to understand its physical meaning. When 7= 0, we

obtain from Eq. (2}

(=10, (6)
and get from the trace of Eq. (1)
__ 87 0w A3
R_ C4¢ T ¢2 ¢yl¢ ¢ D¢ (7)

It is easy to see asymptotic behavior Eq. (5) of the scalar field from this
equation when T'= (. However, remember we assume tacitly that the
scalar field ¢ converges to constant in the infinite w limit and the scalar
curvature R does not depend on w, both of which do not seem to be

obvious. Moreover, the Minkowski space with T=0 and R= 0 has
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only the constant scalar <¢>, which is independent of the coupling
parameter w. It is to be remarked that a solution satisfying

%( ¢,#¢,y—%gw¢,a¢">: 0 (8)
is only ¢=const [4]. Therefore, all Einstein spaces (Ru.=0) with
constant ¢ are exceptions for the statement by Banerjee and Sen, or by
Faraoni.

When T # 0 the asymptotic form of the field equation (2) becomes
O¢=0(1/w), (9)
and we observe the well-known asymptotic behavior Eq. (3) of the
scalar field. We, however, should strictly read Eq. (9) as (J¢=0(T/ w),

or for simplicity

Hé=0(p/w) (10)
for dust matter.

Now we can understand the physical meaning of the difference of
the asymptotic behavior of the scalar field. The Brans-Dicke theory
includes originally the coupling parameter @ in the right-hand side of
Eq. (2) and in the second term of the right-hand side of Eq. (1). When
T+ 0, the dependence of w in the scalar field comes fundamentally
from the coupling parameter w in the right-hand side of Eq. (2), and the
second team of the right-hand side of Eq. (1) vanishes in the infinite @
limit. When 7= 0, the right-hand side of Eq. (2) vanishes and the
dependence of @ comes fundamentally from w in the second term of the
right-hand side of Eq. (1). The Brans-Dicke scalar field has finite
indefiniteness ¢v (¥ which satisfies the d’Alembertian equation (6)
even when matter does not exist (7= 0). This scalar field ¢v (2% is
constrained by another field equation (1), and thus it has the dependence
of w like Eq. (5). The scalar field ¢v(z%, which behaves like a source

of the gravitational field g in Eq. (1), has no material origin. The
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constant part {¢> itself is a special case of this scalar field without
material origin. To the contrary, the asymptotic behavior of the scalar
field with material origin is determined by its field equation (2) with the
source term.

In general, when matter exists (7°# 0 ), the scalar field includes a
part given by matter and indefiniteness ¢v(x* for T=10, and its
asymptotic behavior for large w becomes

p=<{$>+0(1/Vw)+ 0/ w). i
It is clear that the term of O(1/Vw) is more dominant than that of
0(1/w) when the coupling parameter w is large enough. Therefore,
even if T # 0, the Brans-Dicke theory fails to yield general relativity
in the infinite @ limit. This situation could produce other possible
counterexamples, 7+ 0 and ¢=<¢>+0(1/Jw), to the theorem
proposed by Banerjee and Sen. An example cited by them to reinforce
the theorem, a closed vacuum (7 = 0 ) Friedmann-Robertson-Walker
solution with cosmological constant A [6], [7], should rather be includ-

ed because of [1¢=21¢/(2w+3)*+ 0 though T=0.

Il Local Problems

When we consider the difference between the Brans-Dicke theory
and the Einstein theory, we had better distinguish between local prob-
lems (with locally-distributed matter, like black holes) and cos-
mological {or global) problems. Brans and Dicke [1] also comment, in
discussing a Schwarzschild solution in their theory, that we premise the
existence of distant matter in the universe. Our universe always exists,
and in the Brans-Dicke theory we need discuss local problems in the

presence of cosmologically-distributed matter, which supports the
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gravitational “constant”. In the framework of general relativity, which
has a priori gravitational constant, we need not consider our environ-
ment of the universe and discuss purely the local gravitational field
with an asymptotically-flat boundary condition.

It might be very difficult to solve globally all configurations of
matter in the universe in the Brans-Dicke theory. However, it seems
to be a good enough approximation to divide the two side, local and
cosmological problem, because our universe is huge enough. Locally-
distributed matter does not almost influence the structure of the whole
universe. We can consider independently the structure of the whole
universe and determine a cosmological model in the Brans-Dicke
theory. After that (or the other hand), we can discuss individual
problems of locally-distributed matter with an asymptotically-flat
boundary condition without considering the environment of the uni-
verse. To do so, we need accept two premises; We use an experimental
value of gravitational constant supported by cosmological matter for
the constant scalar field <¢>= 1 /G, and require that local scalar field
¢ also converges to <¢> at the distant enough region (r »cc). More-
over, we need adopt a selection rule that the scalar field should show
the asymptotic behavior ¢=<¢>+ O(1/w), which is also a reflection of
the presence of cosmological matter in the universe.

Let us consider the static spherically symmetric vacuum solution

(1] in the Brans-Dicke theory (only scalar part):

. 1 —B/r\*
¢%¢°<1—+B’/r_> W)
where B= (M/2C*¢,) [(2w+4)/ (2w+3)]"2 ¢=[(C+1)2+C (1

-%wC) 1'%, and C is arbitrary constant. It is obvious that this solution
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converges to the constant ¢, in the infinite w limit. In a case of
arbitrary constant C (independent of @), the asymptotic form of this
solution becomes ¢=<¢>+ O(1 /Jw) [3], which means that Eq. (12} does
not produce the corresponding solution of general relativity, the
Schwarzschild solution. We should suppress this behavior and in-
definiteness of solutions with no material origin. We can not accom-
plish this work by introducing additional boundary conditions. Our
selection rule acts to choose a proper solution (or solutions) here. We
should select only a solution the scalar field of which shows the
asymptotic behavior ¢=<¢>+ O(1/w) with material origin, and which
yields the corresponding solution of general relativity in the infinite @
limit. Because the corresponding exact and global Brans-Dicke solu-
tion is originally generated by the nonvanishing energy-momentum
tensor (7% 0), with locally-distributed matter and cosmological
matter in the universe, and so should have the asymptotic form ¢=<¢>
+0(1/w). Even the Schwarzschild-like solution is originally not a
pure local problem in the Brans-Dicke theory. However, we can forget
the effect of the presence of cosmological matter if we set the two
postulates for local problems in the Brans-Dicke theory. In this
standpoint, general relativity is the self-complete approximate-theory
of gravitation as it needs no additional postulates.

If we take formally a choice C=—1/(2 +w), the equation {12
behaves asymptotically as Eq. (3) for the large enough w and the whole
solution becomes identical with the Schwarzschild solution of the
Einstein theory for w—cc [1], [6]. Another formal choice C=—~1/2w
is also available [4]. However, it is to be remarked that this @ has no

meanings though the same letter w is used. This is not the actual
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coupling parameter w derived from the right-hand side of Eq. (2) or the
second term of the right-hand side of Eq. (1) as long as we consider
exactly a point-mass M in the empty space. However, if we regard Eq.
(1) as the local solution approximated for a point-mass M at the origin
and cosmological watter in the universe, we may be able to interpret
this w as the real coupling parameter derived from the right-hand side
of Eq. (2) with source matter. As it is too difficult to solve exactly all
configurations of matter in the universe in the Brans-Dicke theory, this
is nothing but a conjecture, but let us adopt as a postulate. The
coupling parameter @ for approximated local problems is actual as a
reflection of the presence of cosmological matter in the universe and
the scalar field shows the asymptotic behavior ¢=<{¢>+ 0 (1/w). In
this meaning, we should discuss local problems “with 7= 0” and we
can restrict indefiniteness with no material origin. There exists arbi-
trariness of forgiven solutions, for example a choice of C, and it
remains conrtoversial. They give different solutions for finite values of
w, though the corresponding solution of general relativity in the infinite
w limit is same.

For local problems, they are equivalent to each other for a proper
solution to have the material origin 7+ 0 (in the above meaning), to
behave asymptotically as ¢=<¢>+ O (1/w) for the large enough w, and
to converge to the corresponding solution of general relativity in the
infinite w limit. The contracted energy-momentum 7= 0 (in the
-exact meaning) is not identical with the asymptotic behavior ¢=< o>
+0(1/Jw), which leads necessarily to the fact that the Brans-Dicke
solutions fail to reduce to the corresponding solutions of general relativ-
ity when @—oo0.

Banerjee and Sen, or Faraoni seem to apply the Brans Dicke
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theory to pure local problems for locally-distributed matter without
any restriction. They treat exactly local problems as whole cos-
mological problems. They discuss exact solutions with exact 7= 0.
In their common standpoint, the statement 7= 0 means that there
exist completely no other matter in the universe. To the contrary,
though we use the statement 7°= 0, this is a local approximation for
local problems and actually the complete global contracted energy-
momentum tensor does not vanish (7 = 0 ) because of the presence of
other cosmological matter in the universe. When we discuss exactly
locally-distributed matter in otherwise empty space, the scalar field ¢
should not have the constant scalar field <¢>. This is the important
keynote to understand the Brans-Dicke theory true. It is meaningless
that we consider strictly the situation in which matter does not exist, or
vacuum space in the Brans-Dicke theory. These situations become

essential for cosmological problems

IV Cosmological Problems

Next we consider cosmological problems to make clear further the
essence of the Brans-Dicke theory. Let us discuss first the Brans-
Dicke flat solution [1] for the homogeneous and isotropic universe.

Assuming the initial conditions

¢=a=10 .1t=0, {13
it is given as

dst=—dt*+a>(t) [d®+ x*(dO? +sin®Ode?) ], 149

d=o (t/1)7, a=ay(t/1)°, 0a*= pya°, 15
with

r=2/(44+3w), g=(2+2w)/(4+3w), (16)
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and

$o=47[(4+30)/(3+2a0)] ok (17)
when p, is the present mass desity. For the large coupling parameter
w, it is easy to observe that the scalar field ¢ of solution behaves like
Eq. (3) [6]. If the mass density p, decreases to zero, the scalar field ¢
also conveges to zero, and this situation is suitable for the material
origin of the scalar field. It is well-known that this solution reduces to
the Einstein-de Sitter universe of general relativity in the infinite @
limit. However, what does the constant value <¢>= 6 7p,42/c? mean ?
In the infinite w limit, the coupling betwen the scalar field and matter
vanishes. Why does the mass density o, appear in the constant scalar
field <¢>? Which value of the density should we take ? This situation
is rather strange as to the material origin. After all, this constant
scalar field <{¢> seems to be merely constant which has no mterial
origin.

O’Hanlon and Tupper [8] solution for a vacuum, spatially flat
Friedmann-Robertson-Walker spacetime has the asymptotic behavior
$=<¢>+O0(1/Vw) [6], which means that this solution has no material
origin. This solution also has the constant scalar field for w—oo.
Nariai [9] flat solution with a perfect fluid has the asymptotic behavior
Eq. (5) for T=0 (radiation), and Eq. (3) for 7% 0 (matter) [3]. In
both cases the scalar field converges to the constant @, in the infinite
w limit.

The following cosmological solution [10], [11] gives a counterex-
ample to the theorem by Banerjee and Sen [3] and moreover, an
interesting example as to the material origin of inertia. Dehnen and
Obregon say that this model has no analogy in general relativity [10],

but this is not adequate [12]. The Brans-Dicke theory has a particular
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closed solution for the homogeneous and isotropic universe with dust

(T =pc?), satisfyung a (1) ¢(t) = const,

dst=—dt* + a*(t) [ dy? +sin’y (d9*+sin?6de?) ], 19

o (t)=—[87/(3+2w) c*]o(8) 2, 19

a(t)=—[2/C2+ o) ', (20)

2ma®(t) p(t)= M, @
with

w<—2, GOYM/cta(t)=nr, @

where the gravitational “constant” G =(4+2w)/(3+2w) ¢ and M is the
total mass of the universe. The scalar field has obviously the asymtotic
behavior O(1/w), but does not have the constant value <¢> in the
infinite @ limit {(w— —oc). The expansion parameter « also has the @
~dependence, which means the scalar curvature R itself has the w-
dependence.

Let us write down the nonvanishing components of the field equa-
tions (1) and (2) for the metric Eq. (18 to discuss the details of the

asymptotic behavior:

a1 8 azp‘i zﬂz
2ad+at+1= (3F20) 5 wa<¢> +aa< > ®)
3., 167(1+w) o, o(®\ ¢

T D=5 ) ¢+2<¢>+¢’ &
.. a. 8

where a dot donotes the derivative with respect to ¢. For small enough
coupling parameter (o< —1), we can estimate the order of each terms

by means of the solution, for example,

87 a'o
(3F20)C & 0Q/w), (26)
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S o
ai (%) ~0(/w), 09
a2%~ 0(1/w). )

Remark that the mass density o is given and does not depend on w, and
so M has the w-dependence derived from «. The term Eq. @7), which is
the contribution from the second term of the right-hand side of Eq. (1),
remains nonvanishing even though the scalar field has the asymptotic
behavior O(1/w).

If we put () =—(w/2)(¢/4)? and «(¢)= 8 n/c'¢, we get from
Eq. #3) and Eq. @4

2ad+a?—Aa*+ 1 =01/w), 30

%(a% 1) + A= kpc? + O(1). 61)

Thus we obtain in infinite @ limit (@— —o0)
Aa?=1, gpcla*=14. (32
If we regard A as the cosmological “constant”, these relations are
similar to those of the static Einstein universe with negligighle pressure
in general relativity except the difference of the redius of the universe
in v2 which is derived from the opposite sign of A in Eq. ). In the
infinite @ limit, the expansion parameter @ reduces to zero, but this is
due to the initial condition @ =0 at £=0 [12]. There exists a discrete
and isolated limit at w——co. For the finite @ (w<—2) we observe
A @ () =w/2+w), k() p(t)c*a*(t) =4, (33
and so the effective cosmological “constant” A(#) decreases rapidly as

the universe expands.
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It is remarkable that the scalar field ¢ of this solution converges to
zero for both cases in which the mass density p goes to zero, and in
which the coupling parameter @ goes continuously to the infinity (w—
—co0). This means that the combination of o/w plays an important role
there. This situation is rather preferable for the material origin of the
scalar field. We insist, in the Machian point of view, that a proper
cosmological solution should have the asymptotic from ¢=0 (o/w)
without the constant part {¢>. This postulate is a direct reflection of
the statement that a particle in otherwise empty space does not have
inertia. The Brans-Dicke theory becomes singular when the scalar
field ¢ converges to zero as the ratio po/w vanishes. This is the very
necessary situation that we expect in relation to the material origin of
inertia.

Now we need consider the correspondence between the Brans-
Dicke theory and general relativity in combinations of <¢>#+ 0 or <{¢>
=0,and O(1/w) or O(1/J/w). Let us put for abbreviation

A= B G, 5
BAUE%(QZS,#;U—‘QWD¢); (39
_ 8
C—_— C4¢ . (36)
We can summarize orders of magnitude of each terms in » or J[w] as
following:
case(i) p=<>+0(1/w), <>+ 0,
Auw~0(1l/w), Bu~0(1/w), C~0Q), k1)
case(il) p=<d>+0(1/Jal), <>+ 0,
Aw~O), Bu~0(1/J/la]), C~00), (38

case(iil) ¢=0(1/w),
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Apw~0(w), Bu~0(1), C~0(w), (39
case(iv) ¢=0(1 /o)),
Au~0(w), Bu~001), C~0al). 0

These results are derived on the assumption that the metric tensor gu
converges to a nonvanishing function in the infinite @ limit. If g.. has
other w-deoendence which does not satisfy this assumption, we need
another individual analysis for the specific solution, and the result
seems to become different from the above. Even for local problems we
can not deny this possibility. However, it is likely that g.. converges to
a nonvanishing function in the infinite w limit if the scalar field ¢
converges to <¢>F 0 for local problems. Anyhow, it is common that
the Brans-Dicke solutions fail to reduce to the corresponding solutions

of general relativity when |w|—oo.

V Discussions

Should the Brans-Decke theory reduce to general relativity in the
infinite @ limit ? No longer, its statement seems to be a preconception.
It is true that general relativity goes to the Newtonian theory of
gravitation in the weak field approximation (GM/Rc?*< 1). The fact
that both general relativity and the Newtonian theory have the com-
mon parameter, Newton’s gravitational constant G, makes it possible.
However, the Brans-Dicke theory and general relativity do not have a
common parameter each other. The infinite limit of the coupling
parameter @ is ambiguous. After all, it is natural to realize that the
Brans-Dicke theory is a different theory of gravitation from general
relativity and need not necessarily reduce to it in the infinite @ limit.

Whether the Brans-Dicke solutions reduce to the corrvesponding

73



Nagasaki Prefectural University Journal, Vol. 35, No. 1 (2001)

solutions of gemeval velativity in the infinite o limit is closely connected
to their material origin. For both local and cosmological problems, the
asymptotic behavior ¢=<¢>+ O (1 /y/w) for the large coupling parame-
ter w of the scalar field, which leads to the difference in the infinite
limit, is derived from a part with no material origin, even if 7+ 0. For
cosmological problems, the asymptotic form ¢=0{0/w) without the
constant part <¢>, which does not include a priori material origin and
is completely determined by cosmological matter itself in the universe,
leads to the difference in the infinite w limit, when a connection with
matter is cut off. The Brans-Dicke theory can manipulate principally
the material origin itself of the field, and on the other hand, general
relativity has the given gravitational constant G which has the facit
materal origin (the third standpoint, later). The differences of two
theories are rather essential in the physical meaning, the material
origin, for cosmological problems. However, taking the experimental
and observational data into account, it is preferable for local problems
that the Brans-Dicke theory reduces to general relativity in the infinite
 limit.

There exist at least three standpoints; First, standard general
relativity is the complete classical theory of gravitation. Second, the
Brans-Dicke theory is complete by itself. Third, the Brans-Dicke
theory with some additional conditons produces physically reasonable
solutions.

The first standpoint is the simplest and the most real, even though
we can not understand the origin of the gravitational constant G and
cannot help accepting its value a priori. The scalar field does not exist
as the gravitational field. We do not need the redundant Brans-Dicke

theory. General relativity has no restritions on applicable range and is
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completely valid not only for local problems but also for cosmological
problems. Even a particle in the Minkowski space has inertia.
However, there exist no contradictions in general relativity. The
present experimental and observational tests strongly support this
standpoint.

In the second standpoint, the opposite extreme to the first, we can
apply the Brans-Dicke theory to all kinds of problems with no restric-
tions and formally obtain their solutions if possible. We may set exactly
asymptotically-flatness as a boundary condition for locally-distributed
matter. We may investigate black holes in otherwise empty space. We
can discuss even a vacuum space itself. It may be the Minkowski space.
May a particle show the inertial property in this space? These
situations are similar to general relativity. However, a crucial differ-
ence exists between this standpont of the Brans-Dieke theory and the
first standpoint of general relativity. In the Brans-Dicke theory, we
encounter a serious difficultly owing to ambiguity with [ J¢= 0. This
ambiguity on solutions is not avoidable as long as we consider vacuum
(T=0), even if we suppose specific boundary conditions for the scalar
field. This is a crucial defect of the Brans-Dicke theory in the second
standpoint. The Brans-Dicke theory is not complete by itself. In this
ambiguity with 7= 0, the scalar field behaves like $=<¢>+ O (1 /Jw)
for the large coupling parameter w. This form of the scalar field leads
to a difference with the corresponding solution of general relativity
with the same energy-momentum tensor in the infinite @ limit. We
might be able to check this difference by measurements.

The third standpoint set the presence of matter in the universe
forth as a premise; This is the Machian point of view. The presence of

matter in the universe gives a particle inertia. If the mass density of
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matter decreases, inertia of a particle should also decrease. A particle
should not have inertia in otherwise empty space. Cosmology has a
special situation in physics. We always live in this universe and can not
test alternatives. We cannot help discussing every physical phenomena
in this environment. We cannot consider pure empty space and it has
no meanings. We realize that the Brans-Dicke theory itself does not
automatically satisfy these situations. We need to require some addi-
tional conditions to complete the theory. We had better clearly distin-
guish between local and cosmological problems. We propose two
postulates for local and cosmological problems respectively.

For local problems, we restrict to solutions whose the scalar field
shows the asympiotic behavior ¢=<¢>+ O(1 /w). This selection rule is
a reflection of the presence of cosmological matter in the universe and
suppresses ambiguity with [J¢= 0. Moreover, we presume that the
cosmological background gives the finite reasonable scalar field {¢>, that
is, the gravitational constant G at the present time. Thus we can
handle individual local problems with asymptotically-flat boundary
conditions for the metric tensor g, and the boundary condition for the
scalar field ¢ (¢—<¢> as r »>co) in the Brans-Dicke theory without
considering our environment. This split between local problems and the
cosmological background is an extremely good approximation in our
universe. We may discuss the space-varying G by locally-distributed
matter in the “empty” space (in this premise).

For cosmological problems, we require the postulate that the scalar
field of a proper cosmologacal solution should have the asymptotic form
¢=0(p/w). This is a reflection of the Machian point of view. If the
inertial properties are determined completely by the presence of matter

in the universe, the scalar field should not include the constant <¢>
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which has no material origin (This is a cosmologcal problem.). The
scalar field ¢ should converge to zero when the mass density p
decreases to zero in a proper cosmological model. The scalar field
should also converge to zero when the coupling parameter |w| diverges
to infinity and the connection between the scalar field and matter
vanishes. The mass density ¢ and the coupling parameter w are closely
connected as the source term of Eq. (2) and so we can combine two
conditions. Thus, we require that the cosmological scalar field should
converge to zevo in the continuous limit p/w— 0. This requirement is
crucial for considering the difference between general relativity and the
Brans-Dicke theory in the infinte limit of w. The Minkowski space
which has the constant scalar field is excluded as a proper solution.
The cosmological solutions which reduce to the corresponding solutions
of general relativity in the infinite limit of w are also excluded. A
cosmological solution which fails to the corresponding solution of
general relativity is rather physically reasonable and essential The
constant scalar {¢> may be derived from the contribution of gquantum
corrections. However, this contribution should be classically renormal-
ized to the mass density because the inertial-frame dragging is
dominated completely by the dstribution of the mass density itself [13].

The role of general relativity is clear in the third standpoint. All
proper solutions satisfying ¢=<¢>+ O(1/w) for local problems reduce
to the corresponding solutions of general relativity in the infinitie w
limit (, fixing cosmological part), so general relativity is the complete
approximate-theory of gravitation in this standpoint (GR needs no
additional conditions). Rather, this fact may be more fundamental as
a postulate for local problems. General relativity is effective enough

for local problems and for a small period for which the universe is
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quasi- static and the gravitational “constant” is constant enough.

It is a matter of course that experimental and observational tests
should finally determine which theory (, including other extended
scalar-tensor theories) is true and which standpoint is appropriate.
After all, the essential difference may appear only in cosmological
problems owign to the experimentally established large coupling
parameter w. We have not known an exact solution for our universe

yet.
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