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Abstract

The behavior of the Brans-Dicke scalar field and the contribution
of matter to the gravitational constant are discussed in some known
exact cosmological solutions of the Brans-Dicke theory of gravitation
for the homogeneous and isotropic universe. The sign of the contri-
bution to the scalar field at the origin from matter in the universe in-
evitably reverses itself in our closed Machian cosmological model and
hence the integrated contribution from whole matter of the universe
amounts to the positive in spite of the negative coupling parameter
w. No inversion of the distance-dependence of contribution occurs in
open space. It monotonously varies and converges to zero at infinity
for small coefficients of the expansion parameter (o < v/2). In flat
space, the contribution from the far region of the universe dampingly
oscillates with distance, but the difference of signs between the contri-
bution from nearby matter and from the whole universe does not arise.
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In recent papers, we discussed some cosmological models in the Brans-
Dicke theory [1] of gravitation or in the generalized scalar-tensor theory of
gravitation [2]-[4] in the framework of the Machian point of view, which is
reduced to the postulate: The scalar field of a proper cosmological solution
has an asymptotic form ¢ = O{p/w) when the coupling parameter w is large
enough and converges to zero in the continuous limit p/w — 0 [5]. This
postulate means that the gravitational constant, or inertia, is supported by
matter in the universe and a cosmological model necessarily collapses when
matter or its coupling to the scalar field vanishes, and seems to reflect original
and intuitive ideas of Mach about inertia well. Moreover, this postulate is
proved to be equivalent to the Machian relation GM/c*R = const for the
homogeneous and isotropic universe [6].

By introducing negative pressure and a varying cosmological constant to
our models, we found that a Machian solution in the generalized scalar-
tensor theory of gravitation exhibits the slowly accelerating expansion of the
universe [7], which is compatible with the recent measurements [8] of the dis-
tances to type Ia supernovae. Time-variation of the coupling function w(¢)
in this model reveals why the measured coupling parameter w of the Brans-
Dicke theory of gravitation is so large at present [9], [10]. As the universe
expands, the gravitational constant approaches dynamically to the constant
Goo [10}, which gives approximately the present value Gy [11], and the cosmo-
logical constant decays rapidly [7]. Our Machian cosmological model finally
becomes coincident with the Friedmann universe in General Relativity [7].

By introducing a scalar field ¢ as dark-energy we accomplished the sce-
nario of the barotropic evolution of matter and our universe [12]. Our uni-
verse started from the Big Bang (in the classical meaning) with the coeffi-
cient of the equation of state v = 1/3 (the radiation era), passed the dust-
dominated era (v = 0) rapidly in the early stage, and has been staying the
negative pressure era (y =~ —1/3) for the almost all period of its life 101%r.
The barotropic state of the universe has been varying extremely slowly from
v =1/3 to v =~ —1/3 and the universe will finally approach to the state of
v = —1/3 as it expands for ever.

This Machian solution of the (modified) generalized scalar-tensor theory
of gravitation has fascinating aspects as a cosmological model for our uni-
verse, but it includes a crucial defect, the negative coupling constant w in the
theory. This means that the scalar field ¢ becomes a ghost with the negative
energy-momentum. Brans and Dicke also insist that the coupling constant
w must be positive because of the positivity of contributions from matter to
the scalar field ¢ [1]. However, this requirement does not necessarily seem
to be true [13] in the Brans-Dicke theory of gravitation; There is a possibil-
ity of changing its sign for contributions of matter in the universe in curved
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space-time. In this paper we will systematically discuss the behavior of the
Brans-Dicke scalar field in curved space-times, by means of known exact cos-
mological solutions in the Brans-Dicke theory, and contributions of matter
in the universe to the gravitational constant, inertia, in order to clear the
meaning of the negative coupling constant w. The negative coupling constant
is closely connected with the essence of our Machian cosmological models.
We start with the field equations of the Brans-Dicke theory of gravitation:

1 8 1
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where T, is the energy-momentum tensor, T" is the contracted energy-
momentum tensor, and [ denotes the generally-covariant d’Alembertian

1
V=g
The line element of the Friedmann-Robertson-Walker metric for the ho-
mogeneous and isotropic universe is described as

O¢ = ¢*, = 0u(v/~99"0,)8 . 3)

ds® = —dt* + a*(t)[dx* + o2 (x)(d6* + sin® 6dp?)] (4)

where
siny for k= +1 (closed space)

alx) =4 x for k=0 (flat space) (5)
sinhy for k= —1 (open space).

The Brans-Dicke theory has a kind of particular solution for the homogeneous
and isotropic universe with dust (T = pc?), satisfying the relation a(t)¢(t) =
const [13]-[15] {(, see also [16]): For closed space with the coupling constant
w < —2, the expansion parameter is

a(t) = [-2/@2+w)]"? ¢t, (6)
for open space with w > —2 (w # —3/2),
a(t) = 2/2+w)]"* ¢, (7)
and for flat space with w = —2,
a = ao(t/t), (8)
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respectively. The energy-momentum conservation gives
a3(t)p(t) = const, (9)
and the scalar field satisfies

$(t) = —[87/(3 + 2w)c?p(t)E?, (10)

which yields the gravitational ”constant” G = (442w)/(3+2w)¢. Therefore,
this model gives G > 0, G =0, and G <0 for k= +1, k=0, and k = —1
respectively, and so only the closed model is physical in the usual meaning.
However, our interest in this paper is to investigate the behavior of the Brans-
Dicke scalar field for all phases of cosmological models. The scalar field ¢
itself remains physical for all phases of our models.

We consider a shell, the volume of which is restricted by the two hyper-
surfaces x = x, and x = x;, with 0 < xo < x; < 7 (or +00), in these models,
and let the shell has additional mass density p + Ap. We will discuss effects
to the scalar field by this shell in each curved space-time. The perturbation
method used here is essentially the same as the discussions in Ref. [15]. The
perturbation by the shell to the scalar field will depend on variables y and
t, and will be in general written as ¢(t) + A¢(x, t) for the isotropic universe.
The perturbed term A¢(x,t) of the scalar field obeys the following partial
differential equation derived from Eqs.(2) and (3) if the perturbation is small
and the change of the metric is negligible:

& 1 9
57 (A0) + 3 (A¢) 55 (80) + 2/\(X)—(A¢)
at Ox
= (3—_'_82;)—Ap (Ap = 0 outside the shell), (11)

where
cotx  for k= +1 (closed space)

Ax) =< 1/x for k=0 (flat space) (12)
cothy fork=—1 (open space)
and a dot denotes the usual partial derivative with respect to t. The homoge-
neous equation of Eq.(11) admits the separation with respect to the variables
x and t in each phase; let us write

Ap(x, 1) = X()T(1), (13)
and then, denoting by S the separation constant, two equations arise:
X dX
— 4+ 2A)—~-S5- X = 14
R0 0, (14
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T | adr s

di? a(t) dt  a(t)?

We obtain easily general solutions of Eq.(14) in each phase with A(x),
[Crexp(—V/S = 1x) + Coexp(v/S — 1x)]| /sinx for S >1

X(x) =< (Cy+ Cax)/sinx for =1
[C1cos(v/T = Sx) + Cpsin(v/1— Sx)| /sinx  for S <1

—0. (15)

(16)

for closed space,

[Cl exp(—vS + 1x) + Coexp(v/S + lx)] /sinhy  forS> -1
X(x) =4 (C1+Cax)/sinhy for §=-1
[Cyexp(—v—S — 1x) + Caexp(V—5 — 1x)] /sinhx for S ? ~)1
17

for open space, and

[Cl exp(—VSx) + Cz eXP(\/S_X)} x' forS>0
X00 =1 (C1+Caxx for §=0 (18)
[C1 cos(v=Sx) + Casin(v=Sx)| x™*  for § <0

for flat space, where C} and C; are integral constants.
On account of the linear expansion of our cosmological models, a(t) = at,
the equation (15) reduces to

T 34T S
R 1
dt? + t dt a2t2T 0, (19)

which has a general solution
Cltpﬁl + Cqt —p-1 fO’f‘ S > —a?

T(t)=¢ (C1+Colnt)t™! for 8 = —a? (20)
[Cicos(ulnt) + Cysin(ulnt)]t™t for S < —a?,

where a constant = /|1 4+ S/a?|.

Taking the equation Apt® = Apytd into account, we obtain in each phase
as a particular solution of the inhomogeneous equation (11)

8rApptd 1

80 = "G awmdt

(21)

where an index O denotes a present value of each variable. As scalar fields
in each region must be connected with each other smoothly for all ¢ at the
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hypersurfaces x = x, and x = x;, the time-dependence of the general solu-
tion of the homogeneous equation must be the same as that of the particular
solution. Hence the unknown function T(¢) must vary with time as ¢ 1, and
so the separation constant S is equal to —o? for all phases &k = +1, 0.

By considering the separation constant S = —a? < 1 in Eq.(16) and that
a whole solution must be regular at x = 0 and x = # for closed space, we
construct an overall solution of the perturbed term A¢(x,t) as

Asink

Ag,(x,t) = ?sin)z( (0<x<x0),
1 / Bycosky + Basinky

Man(rt) = 3 (PRI L 200 (0 <x< )
Csink(y —

Bodt) = FEECE (g <xsm), 22

where k = V1 + &2, and A, By, By, and C are integral constants, which are
determined by the conditions that solutions in each region must be connected
with each other smoothly at x = x, and x = x;, that is,

A¢,(X0:t) = Ady(xot),

Agy(x1:t) = Adelx1,t),
KAP(x0rt) = HAdy(Xo,t), (23)
WA (x1,t) = KDP(x1,1).

After solving Eqs.(23) with Eqgs.(22) simultaneously for A, B;, Bs, and
C, we get the perturbed scalar field at the origin

Ado(t; X0, X1) = }(1_% Ag,(x;t) (24)

87 Aptz . i
B e xconnty - ) conxsinnt

or in an integral form

Aébo(t;XOle) =

Apt? 2 X1
Smapt = / sin x sin k(x — 7)dx . (25)

8+ 2w)c?sinkm J,

When the shell is thin enough, on account of a theorem of mean value, by
representing M mass of the shell with density Ap in closed space
X1
M, = 47rApa3/ sin? xdx , (26)

Xo
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we obtain the distance-dependence of contribution to the scalar field at the
origin from matter of the universe with mass M, at the point x = x* in the
background metric (4) with o(x) = sinx for closed space

2M, sin k(x* — )
3+ 2w)c?at sinkmsinx*

Ago(t;x7) = T (27)
A significant feature of this distance-dependence is an inversion of the sign
of contribution at a point x, = (1 — 1/x)w. The contribution to A, from
matter in the region inside of x, is negative when w < —2 and « > 1, and the
contribution from the region outside of x, becomes positive. The contribu-
tion from nearby matter obeys the inverse proportion to the proper distance
(A¢y o< —1/r), and the contribution from distant matter oscillates slowly
with distance when the constant x becomes large. However, the contribution
from the whole universe, given by A¢y(t;0,7), always amounts to the pos-
itive even if 3 + 2w < 0 in closed space. This fact gives a counter example
to the assertion of Brans and Dicke [1], and does not seem to be known well
yet. We exhibit here two graphs of the distance-dependence of contribution
of matter; Figure 1 represents the contribution from matter with mass M; at
the point y = x* and Figure 2 represents the sliced contribution by the thin
shell of the universe at x = x* (multiplied the former by sin® x*). The solid
line is for @ = 1, the dotted line for @ = 2, and is described by an arbitrary
scale in y-axis, respectively.

Figure 1. Figure 2.
In the case of open space with the separation constant S = —a? > —1,
we build from Eq.(17) for the perturbed scalar field

Asinh ky
A 4 = = 0< x< Xo),s
¢a(Xs ) t Sinhx ( X XO)
1 /By coshkx + Bysinh ky
A t - = - A < < ’
¢b(X7 ) t ( sinhx ¢p(t) (XO X Xl)
Ccoshk
Ad(t) = Z2E (y < x < +o0), (28)

t sinhy

where k = /1 — a2, after the discussions on the behavior of the scalar field
at the origin or at infinjty. Remark that only a minus sign of A¢, can give
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a physical solution for the scalar field at the origin A¢,. By solving the cor-
respondent equations (23) simultaneously and after the similar calculations,
on account of mass of the shell in open space
X1
M, = 4nApa® / sinh? ydy, (29)
Xo

the distance-dependence of contribution to the scalar field at the origin from
matter at x = x* in the background metric (4) with o(x) = sinh x for open
space is derived:

2M, cosh kx*

Agy(t;x*) = -
Go(t;X") (3 + 2w)c?at sinh x*

(30)

No inversion of the contribution from overall matter in the universe happens
for all coefficients of the expansion parameter a (0 < a < 1) in this case.

For open space with S = —1 (@ = 1), one finds by means of the similar
way for the perturbed scalar field
g t) = fmﬁx<o<x\ 5
8ot) = G (a<x<+oo),

and the distance-dependence of contribution

2M, 1
(3 + 2w)e?tsinh x*

Ady(t; x*) = —

For open space with § < —1 (a > 1), one also finds

Asinh ky
= = <y < ,
Ada(x, 1) 7 sh (0<x < x0)
1 ( By cosh kx + By sinh kx
A t - Ag, (¢ <X S X))
wi) = (Bt F86,6) (xo <x <)
C cosh kx
A t — < , 33
$(x, 1) ¢ Sinhx (1 < x < +00) (33)

where kK = v/a? — 1, and obtains similarly

2M,(a? — 2) cosh kx*
(3 + 2w)c?a’t sinhx*

Agy(t;x") = — (34)
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Thus, for all cases of the separation constant S, any inversion of the contri-
bution never occur in open space. The contribution of matter in the universe
monotonously varies and converges to zero at infinity for k < 1.

In the case of flat space with the separation constant S = —a? < 0, we
construct from Eq.(18) an overall solution for the perturbed scalar field

Asink
Mout) = T 0<x <),
1 /Bicosky + Baysink
Agy(x,t) = ;( : XX = X>+A¢p(t) (Xo < X < x1)
C cosk
Mg t) = T ba <X <+00), (33)

where £ = a. Remark that a trivial solution arises for sinky/x in the C-
region (x; < x < +00). After considering mass of the shell with density Ap
in flat space .
1
M, = 47rApa3/ Xldx, (36)
Xo
we get the distance-dependence of contribution to the scalar field at the origin
from matter at y = x* in the flat background metric (4) with o(x) = x

2M, cos kY *
Adpglt; x*) = 37
d)o( X ) (3 + QW)CQQt X* ( )
It is natural that the distance-dependence with w = —2 surely gives A¢,

—1/r for the contribution from nearby matter, but it is somewhat peculiar
that it behaves like a damping oscillator in the far region of the universe in
spite of the flat space. However, the sign of the contribution from the whole
universe A@(t; 0, +00), or the cosmological solution itself, is coincident with
that of the contribution from nearby matter. Thus, we confirm that it is only
the closed space in which the difference of signs between the contribution from
nearby matter and from the whole universe arises. Physical meaning of the
oscillation of the contribution in flat space remains unknown.

We next survey the behavior of the scalar field in other exact cosmological
models. We know two examples of such exact cosmological solutions: the
Machian flat solution [6] with the arbitrary coupling constant w (w # —3/2.
The condition w < —2 yields an attractive gravitational force G > 0.)

a = ao(t/to)?, (38)

$(t) = —[27/(3 + 2w)c’]p(t)t?, (39)
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and the Brans-Dicke flat solution [1] for the homogeneous and isotropic uni-
verse

¢ = go(t/to)", a=ao(t/to)? (40)
with
P=2/(4+30), g= (24 2w)/(4+3w). (41)

The correspondent equation to determine the time-dependence of the con-
tribution in these models, derived from Eq.(15), is reduced to the following
general form:
dy | dy
2 _
z ﬁ+aa:a+(b$m+c)yf0. (42)

This differential equation has a general solution (see [17]) when m # 0 and
b#0
y:acl_gaZ,,(z\/l;x%), with v = 1 (1—a)?—4c, (43)
m m

where
Z,(x) = C1J,(z) + CY.(x), (44)

and J,(z) are Bessel functions of the first kind, ¥, (z) are Bessel functions
of the second kind respectively. We find that these solutions never give
a function of powers, the time-dependence of a particular solution of the
correspondent inhomogeneous equation (11). This difficulty means that no
separable solutions with respect to x and t for the contribution from matter
in these cosmological models and suggests for us to seek other methods to
determine the behavior of the scalar field in curved space-times.

Let us suppose a static point-like source described by a delta function at
the origin in any cosmological models expanding arbitrarily for the homoge-
neous and isotropic universe. No explicit time-dependence of the contribution
from the point mass appears and we may put the separation constant S =0
in Eq.(14): ,

d*X dX
o TP =

which yields a general solution

0, (45)

Cy+ Cycoty  for k = +1 (closed space)
X(x)=14 Ci+Cax ! fork=0 (flat space) (46)
C1+ Cacothy for k= —1 (open space).

On account of the condition that any solutions behave like 1/x in the neigh-
borhood of the origin, we select as physical solutions coty, x %, and coth y
for k= +1, k =0, and k = —1 respectively. Remark lim,_,- cothy =1 for
open space, which means the contribution from matter at the origin does not
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vanish even at infinity. The solution cot x for closed space is antisymmetric
at ¥ = 7/2 and diverges at the opposite side to the origin of the universe,
x = 7. These behaviors of the contribution from the static point mass at
the origin are very different from those of the contribution from the spherical
symmetric thin shell at x = x* in the expanding universe. A value of the
separation constant S, which depends on how the universe expands, plays an
important role in the present problems.

For more general discussions, we need to investigate Green’s function in
curved space-time for the generally-covariant d’Alembertian. The methods
by means of Green’s function in curved space-time enable us to take a global
view of the contribution of matter to the scalar field and may make clear
the causal aspects of Mach’s principle with retarded or advanced effects.
Seeliger’s paradox for the scalar field in infinite space also appears in our
perturbation methods by integrating the contribution for the whole universe
in open or flat space. (Cosmological solutions itself do not surely include this
paradox.) The problems of Green’s functions in curved space-times remain
in future papers.

Qur most interesting concern is whether the inconsistency of signs be-
tween the contribution from nearby matter and from the whole universe
generally occurs in closed space. Is it a special phenomenon only in our
closed Machian cosmological model? If so, the gravitational constant, or
inertia, is dominated by matter in the far region of the universe. Is the
linear expansion of our cosmological model, which means all observers fixed
to matter in the universe do not accelerate to each other, essential in the
Machian point of view or in problems of behavior of the scalar field? We,
unfortunately, have not known any other exact cosmological solutions of the
Brans-Dicke field equations for closed space yet. If the above propositions are
affirmatively proved, they will make our Machian cosmological models more
advantageous. Our universe is inevitably restricted to closed space because
of giving an attractive gravitational force G > 0.

We restricted our discussions here for the behavior of the scalar field in the
universe to the Brans-Dicke theory of gravitation. The Machian cosmological
model with the cosmological constant and negative pressure in the generalized
scalar-tensor theory of gravitation gives the essentially same linear expansion
parameter a(t) = a(w)t as in the Brans-Dicke theory. Its coefficient a(w)
varies quasi-statically with the coupling constant w according to the evolution
of the universe and realizes substantially the accelerated expansion of the
universe at present. Therefore, the similar calculations for the contribution
of matter in the universe are possible and the same inversion of signs between
the contribution from nearby matter and the integrated contribution from
the whole universe also appears in closed space in the framework of the
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generalized scalar-tensor theory of gravitation.

More fundamental problems concerned with a negative coupling, that is,
a ghost or the negative energy-momentum of the field, still remain to be
solved for consistency of our Machian point of view.
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