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Abstract

Last year the author studied linear parallel displacements along an infinitesimal
parallelogram and obtained objects are regarded as evaluating “a curvature” at
cach point on a Finsler space([8]). In this paper, their propertics are investigated
in detail.
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Introduction

The author have been studying linear parallel displacements in Finsler geometry from
2008. Last year the author studied objects provided from two linear parallel displace-
ments. One is a difference of two parallel vectors provided from linear parallel displace-
ments along two one-way courses of an infinitesimal parallelogram. The other is a differ-
ence between an initial vector and a vector provided from a linear parallel displacement
going around an infinitesimal parallelogram. Then three quantities are found out from the
objects. The author call them “W, L, K” in §2. These W, L, K are Finsler tensor fields
whose coefficients are functions on the subbundle H of TT'M. In §3, locally Minkowski
space is distinguished by W, L, K (Theorem 3.2).

Here, we put terminology and notations used in this paper(cf.[1] and [2]). Let M be
an n-dimensional differentiable manifold and z = () a local coordinate of M. T'M is the
tangent bundle of M and (z,y) = (2',3') is a local coordinate of TM. N = (Ni(z,y))
is an non-linear connection of TM and its coefficients of N on a local coordinate (z,y).
F(x,y) is a Finsler structure (or Finsler metric, Finsler fundamental function) on M.
Further, FT' = (Ni(z,y), F},(x,y), C},(x,y)) is Finsler connection and its coefficients of
FT satistying T}, := F}; — Fj, =0, Dy := y"F}; — N} = 0 and g;jx(z,y) = 0(h-metrical).
And Nj(z,y), Fj(z,y), C;](a"y) are positively homogeneous of degree 1, 0 and —1, re-
spectively. Therefore N, 5 and Fj come to Cartan’s ones. Last, we denote the collection
of horizontal vectors at every point on T'M by H. This is the subbundle of TT' M and
its dimension is 3n. So we denote a local coordinate of H by (x,y,z). And it is called
“horizontal subbundle of TTM?”. All of objects appeared in this paper (curves, vector
fields, etc) are differentiable. In additions, indexes a,b, ¢, -+, h 4, j, k, l,m, -+ ,a, 3, ,
run on from 1 to n = dimM.
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1 Linear parallel displacement

Now, for a vector field on a curve ¢ with a parameter ¢, we give a following definition
of linear parallel displacements along ¢([3],[4],[5],[6]).

Definition 1.1 For a curve c = (¢'(t)) (a <t < b) on M and a vector field v = (v'(t))
along c, if the equation

dvt dc”
'7 ? . T = ol fr—
7 +v (e, é)c" =0 (¢ 7

(1.1) )

is satisfied, then v is called a parallel vector field along ¢, and we call the linear map
I, : v(a) — v(b) a linear parallel displacement along c.

The difference from the traditional notion of parallel displacements in Finsler geometry
are three points. One of them is the fact that the inverse vector field v (7)(7 = —t+a+0b)
is not always parallel along the inverse curve ¢'(7), even if v(t) is parallel vector field
along a curve ¢(t)(cf.[3], [5]). For this point, we have a following theorem.

Theorem 1.1 Let c(t) be a curve on M and v(t) parallel vector field along c. The
inverse vector field v (7)(17 = —t+a+b) is always parallel along the inverse curve ¢~ (1),
if and only if

(1.2) Fyi(ce) + Fii(e,—é) =0
s satisfied.

The others of them are facts that we can consider, for vector fields u(t), v(t) along
c(t), an inner product g;;(c, ¢)u’(t)v?(t) along the curve ¢(t) and the inner product is not
always preserved, even if u, v are parallel vector fields along c.

Then we have(cf.[4])

Proposition 1.1 Let (M, F(x,y)) be a Finsler space with a Finsler connection (N}, F},, C5,)
satisfying h-metrical g;j, = 0. For any parallel vector field v = (v'(t)), u = (u'(t)) along
a curve ¢ = (¢'(t)), if ¢ is a path or a geodesic, then the inner product g;;(c, ¢)v'u’ along

c 18 preserved.

Theorem 1.2 Let (M, F(x,y)) be a Finsler space with a Finsler connection. We
assume that the Finsler connection is h-metrical and the metric g;; is positive definite.
Any smooth curve preserves the inner products of parallel vector fields along it, if and

only if gg/’ij = 0 is satisfied, namely, (M, g;;) is a Riemannian space.

2 Tensor fields W, L, K

Next we introduce conclusions obtained by investigating linear parallel displacements
along an infinitesimal parallelogram([8]).

We studied two cases. One is the case that makes an initial vector be two parallel
vector fields along two routes(Case 1), and the other is the case making a parallel vector
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field along one loop(Case II). Hereafter, we assume that all points and curves are in one
coordinate neighborhood.

Case L. Let p,q,r, s be four points on M and (x%), (2" + &), (2 + & + '), (' + 1)
coordinates, respectively. Further c;, o, c3 and ¢4 are following curves with a parameter
tO<t<1):

ci(t): 2i(t) = 2"+ & (p to q),

(I) eot): 2'(t)=a'+¢ + tn' (g tor),
es(t) :cl(t) =z'+ 1‘77 (ptos),

c4( )i 2i(t) =2+t +tE (s tor).

We take two routes ¢ = ¢; + c(p — ¢ — r) and € = ¢3 + c4(p — s — r), and
consider linear parallel displacements along ¢ and ¢, respectively. Let V' = (V) be an
initial vector at p and V,,V, the value at ¢ and r by the parallel vector field along c,
respectively. Further, let VS, V. the value at s and r by the parallel vector field along ¢,
respectively(See Figure 1).

Figure 1: Case |

Our standpoint is to investigate the difference V, — V,.. The result is as follows:

(2.1)
S | o OR,oF
V=V =[(Fp(x,€) — F(e,m) (€ +77) + ( Wj (x, &)1 + o L, m)e) (" = €F)
6F’i 5Flek i ¢k h
+( Wf (z,6) — W(‘T ) = Eoi(, &) Fyn(a, ) + Fop(a,n) Fy (2, ) €7V +

Case II. Let four points p, ¢, 7, s be the same in Case 1. The curves cs, ¢4, however, are
different from (7) as follows

1(t) = 2'(t) = 2 + €' (p to q),
(11) o) 2'(t) ="+ +' (gtor),
c3(t) o ') =2+ &+ —t& (rtos),
4(t) 0 2'(t) =a"+n—1tn' (stop),

where 0 <t < 1.
We take a loop ¢ = ¢1 +ca+c3+ca(p — ¢ — r — s — p) and consider a linear parallel
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displacement along c. Let V = (V%) be an initial vector at p and Vo Vi, Vs the value of
the parallel vector field along ¢ at ¢, r, s, respectively. Further, let V' be the value at the
end point p(See Figure 2).

Figure 2: Case 11

Our standpoint is to investigate the difference V' — V. The result is as follows:

(2.2)

_ , , . . . OF}. - OF. .

V=V = (B, =) = By, ) 1)) + (G —ne + Z @ (=)0 =€)
OF . SFi , . ,

(S (=) = B () = By, =) (e, =) + Fy (0, €) i (2, ) V" -

Remark 2.1 In (2.1) and (2.2), (---) expresses 3rd and more degree terms with re-
spect to £, 1.

In Riemannian geometry, two differences VE—V? and Vi~V are evaluated by “single”
Riemannian curvature at the point. But in our Finsler case, we notice that the quantity is
not as same as that in Riemannian case from (2.1) and (2.2). So we can consider following
quantities by (2.1)

(2.3) W;;j(mf,n) = F}fj(m, &) — F,ij(z, n),
, OF! OF
(24) Liy(a &) i= 5@ On* + Z )",
. OF!. SF _ _
(25) iyl &n) = 2 (0,€) = S () — Fly (0, ) Fa(0, ©) + Fiu o) Fiy )

Then we can express (2.1) as follows:

(2.6) V' =V, = [Wy;(w, &m)(E +07) + Ly (2. &) (0’ — &) + Ky (. & il €V 4+
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On the other hand, we can consider following quantities by (2.2)

(2.7) W}ij(xv -n,§) = F}ij('rv_ )_F}ij(%g);
(2.8 iyl —n.€) = S -+ S 0, ),
(2.9)
OFhJ 0F}), j
thk( —n,§) = (557 1) — Sz (z,8) — Fr:qg(x —n) Fyi(z, )+F1k(1’ 3) h]('r £).

Then we also can express (2.2) as follows:
(2100 o _
V=V = W, = (& +7) + Ly (2, =0, 8) (0 — &) + K (@, —n, )& IV" +

After all, we have a following theorem([8]).

Theorem 2.1 Let M be an n-dimensional differentiable manifold with a Finsler con-
nection FT' = (Ni(z,y), Fji(,y), Cjy (2. y)) satisfying Tjy(z,y) =0, Dj(x,y) = 0. First,
for an infinitesimal parallelogram defined by (I) and an initial vector V.= (V*), we have
the difference V, — V,. satisfies (2.6). Neat, for an infinitesimal parallelogram defined by
(IT) and an initial vector V. = (V?), the parallel vector V. = (V') is obtained and the
differences V — V satisfies (2.10).

Remark 2.2 We know a curvature transformation in Riemannian geometry. In our
case, following quantities

(2.11) Wiz &) (& + )+ Ly (=, &) (07 — &) + K jp(x, & ) €F

(212) W;Lj(‘rv =, 5)(&7 + 77]) + L;Lj(x7 =, 5)(77] - 5]) + K;ij(ﬁl?, =1, f)fjﬂk

may be regarded as it. we, however, can’t decide which is “curvature transformation” in
Finsler geometry, yet.

Now we investigate Wy (x, —n,&), Lj,;(x, =, §), K} ;.(2, =1, §). These quantities are
obtained from the case maklng a parallel vector field along one loop(Case II) but are also
given from the case that makes an initial vector be two parallel vector fields along two
routes defined by (-7, ), likely Case I(See Figure 3).

Further, we can consider cases of (=&, —n) and (7, —¢). Then we have

(213) Wlij(xa 757 777)7 L;’L](mJ 7£a 777)7 K}ka(x? 7£a 777)7
(214) WiLLJ(JM 7, 75)7 Lifu('La 7, 75)7 K;ij(.’[, 7, 75)
Therefore after all, we can define following three quantities
(2.15) Wii(x,y, 2) = Fy(x,y) — F(x, 2),
i aFiZLm m aFfle m

(2.17)

1 5F’Z74 5F1 7 m 7

Khjp(2,y,2) = = kJ (z,y) — 5;? (z,2) = Foi(w,y) Fop(z,y) + Fop(z, 2) i, 2).

0T
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Figure 3: (&,7n) and (=7, ¢)

Then the formulas (2.3) ~ (2.5), (2.7) ~ (2.9), (2.13) and (2.14) are regarded as the
values at four points (x,€,7), (x,—n,&), (x, =& —n), (r,n,—§) on H, respectively(See
Figure 4).

Figure 4: Values at (z,€,n), (x,—n,§), (x,—&,—n), (x,n, =)

3 Properties of W, L, K

Now we investigate properties of W, L, K in detail. First the tensorial property of
W, L, K are trivial by the definitions (2.15), (2.16) and (2.17) because of the positively
homogeneity and the formation of coordinate transformations of F;LJ(x Y).
oF}
)

Since the positively homogeneous of degree 0 and —1 of F}, (x,y) and (z,€&) with

respect to y, respectively, we have a following lemma.

Lemma 3.1 For any positive number p > 0,0 > 0,

(31) W}ZLJ(T”/)fO’?]) = WfZLJ(T7€77])J

i _ gaFlim m BaFIfLm m
(32) th('rapga 077) - P ayj (%f)n -+ o ayﬂ (xn)f )
(3.3) K (. p& o) = Kj (2,8, n)
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are satisfied.

Here we notice that if Wj;(x,&,m) = 0, Lj;(z,&,m) = 0, Kju(r,&n) = 0 are sat-
isfied, then Wj (z, p,0m) = 0, Kj;.(z,p,0n) = 0 are true from Lemma 2.1. For I,
L (x, p&,om)(p€ — anj) = 0 is satisfied. Because of:

From Lj(x,&,m) = 0, ay] m ()" = — agjm (@, &)n™ is true.
Then

i

thm 718Fhm m
Ly (x. p&, om) = op™" ayi B+ poT =g B (wm)E

(3.4) Z.

— — aFm m
:(o’p 1_po’ 1) a;j (CC,&)T]

is satisfied. Therefore

Lj,;(x, p&, on)(p& — o)

OF . .
= (op™" — po ") 2 (@, )™ (p€ — o)

oy’
(35) _ -1 -1 aF‘fZLm mej 8F
=(op" —po)(p By (z, "¢ — By — (2, O™y’
_ -1 _ -1 aF}ZLm me] 6FZ m —
= (o7 = g ) g e e+ S e =0

Then we have a following theorem.

Theorem 3.1 For a point x = (z') on M and a pair (£,n) of directions at x, if
Wii(x,6,m) =0, Ly;(x,&n) =0, Kj . (x,&,m) = 0 are satisfied, then following equations
are satisfied for any positive number p > 0,0 > 0.

(3.6)
Wii(x, p&, 0n)(p& + an’) = 0, Ly;(x, p€,on)(p€ — on?) = 0, K., p&, on)ory p&* = 0.

Remark 3.1 At a point x and a pair (§,m) of directions satisfying the conditions of
Theorem 2.1, then

(3.7) V.=V,
is satisfied in the sense of approximate of second order with respect to £, 1.

Next we also have following three propositions.

Proposition 3.1 Let FT' = (Nj(z,y), fi;(2,y), Cj;(x,y)) be a Finsler connection sat-
isfying T); = 0 and Dy = 0. Then W =0 on H is equivalent to L =0 on H.

Proof
From Wy (z,y,2) =0, Fi,;(x,y) = Fi,(x, 2) is satisfied. This implies

OF}, OF},
ayk ('Iay) - azk (Iv

(3.8) z)=0.
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Therefore Lj;(x,y, z) = 0 is satisfied.
Inversely, we assume L;Lj(x, y,2) = 0. Then the following equation

is satisfied on any point (z,y, z). We take partial derivations by ¢! and z* of both sides,
respectively. Then we have

0*F},
Oyi oyt

0*F},
070k

(3.10) (z,y) =— (x,2).

This means that the derivative of the secon order by the second variable of the coefficient
F flu has no the second variable. Namely,

OF;, .
(3.11) Gy (©9) = Qi ()"

is satisfied.

On the other hand, F, }LJ (z,y) is positively homogeneous of degree 0 with respect to the
OF};
oyk

variable y. So (x,)y* = 0 is satisfied. Therefore we have

(3.12) Qhjim (2)y™y" = 0.
The above quadratic form of y is satisfied on any ¥, so Qﬁzjkm(x) = 0 must be true.

Therefore we have %(m, y) = 0. Namely,
(3.13) V[/;;j(amy7 2)=0
is satisfied.
Q.E.D.
In addition, according to the above proof, we have a following proposition.
Proposition 3.2 Let FT' = (Nj(z,y), f;;(x,y),C},(x,y)) be a Finsler connection sat-

isfying T); = 0 and D} = 0. If W = 0 is satisfied on H, then %Zij (z,y) = 0, namely,

Fy; = Fiy(x) is satisfied on TM.

Further, if we assume Wi (z,y, 2) = 0 and K}, (x,y,2) = 0 on H, then we can prove
a following proposition.

Proposition 3.3 Let FT' = (Nj(z,y), f;,;(x,y), C},(x,y)) be a Finsler connection sat-
isfying Ty; = 0 and Dj = 0. If, for any point (z,y,z) on H, Wéj(q:,y, z) = 0 and
Kii(x,y,2) = 0 are satisfied, then the torsion tensor fields Py ;(z,y), R}, ;(x,y), Cy;(z,y)
and the curvature tensor ficlds ;ij(x,y), P,ijk(:uy) of FT satisfy following equations:

(3.14) P,’ij(z,y) =0, R}‘Lj(x,y) =0, P,fjk(x,y) + C,ilk‘j(x,y) =0, bejk(x,y) =0.
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Proof o

Since Proposition 3.2, Z#(2,y) = 0 is satisfied. From Pl = 8y] — Fj, and N} =
ymFyz@](D - 0)7

(3.15) Piy(w.9) = 0

is satisfied. Next, from —%¢ 6 = Py, + Chyy; — Chy Pl and Pp; = 0, we have

And from Kj;(x,y,2) = 0, of course Kj ;. (x,y,y) = 0 is satisfied. In addition, in
general, K, (x,y,y) = Ry, ;. (z,y) — C,,(x,y) R} (v,y) is true. So R, — Cp R =0 s

satisfied. And from R, = y™(R;,;; — Ch R3,), we have

.17 £ (2,4) = 0.
We put the above conclusion in R}, — C;  R% = 0 again and we have
(3.18) Rij(Iay) =0.
Q.E.D.

Now the author stated in detail the conditions for a Finsler space to be locally
Minkowski space in [7]. If we apply Proposition 3.3 to a Finsler space with the prop-
erty of h-metrical, then according to [7], we have a following theorem.

Theorem 3.2 Let (M, F) be a Finsler space with a Finsler connection
FT = (Ni(z,y). Fiy(x,y), Ciy(x,y)) satisfying T, = 0, Di =0 and gy = 0.

If W and K wvanish on H, then the Finsler space (M F,FT) is a locally Minkowski
space and the inverse property is also true.

Remark 3.2 From Theorem 3.1, Remark 3.1 and Theorem 3.2, we notice that a locally
Minkowski space is “flat in the sense of linear parallel displacement”.

Last, we state three lemmas that can be proved from the definition, easily.

Lemma 3.2 For Wi, (x,y, 2) = Fy;(x,y) — Fi,;(x, 2), following equations are satisfied.

(319) W}t‘]('I'?Z?y) = 7Wfij(xvyaz)
(3.20) Wiz, y,y) =0
(3.21) Whix,y, 2) + Wy, —2,y) + Wy,(2, —y, —2) + Wyi(z,2,—y) =0

Lemma 3.3 For Lj;(v,y,2) = dF’”" (x,y)z™ + ah"‘ (x,z)y™, following equations are
satisfied.

(322) Lilj(l‘azay) = Lﬁzj(mvyvz>

i aFZ 7 i m
(3.23) Lh](az y,y) =2 oy (g, y)y™ = Q(Phoj —&—Ch]‘o ChmFoj)
(324) L;’Lj(aj?y’ Z) + L;Lj( T, —zY ) + L;Lj(‘r7 Y, _Z) + L;L](‘“L) 2 _y) =0
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Lemma 3.4 For K ;,(v,y,2) = i
following equations are satisfied.

(33 y) oxJ ( '72)7Frz;qj($7y)F}:z(x’y)+FrZ;Lk(x7Z)F}$(‘T7'Z)f

(3.25) Klejk( y) = thj(ff Y, z)

(3'26) Kfibjk(x Y, y) Rh]k( ) Chm('r?y)R (z y)

(3.27) K;zjk(mayv z) — thJ(T y7z) (T YY) — thg( )
(3.28) Kfibjk(l’a@/v )+Khjk( ,2,Y) = (x Y,Y) +Kh1 (z, ,z)
(3.29) K}ijk(% —y,2) + K;ij(i’a y,—z) = (‘Tvya z) + Kh]k( —z)
(3.30) K;ij(xvyv z) + K;ij( —z,y) + Kizuk( —y,—2) + Kliljk($7 2, —Y)

= Kliljk(xa y7y) + Kiizjk( €T, =Y,y ) + Khjk('rv 272) + K}izjk(mv —Z, _Z)

Remark 3.3 If Fy; is the coefficient of Riemannian connection, then Wj; =0, Lj,; =
0 are satisfied and K;ij is the coefficient of Riemannian curvature.
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